Xerox Control Program for Real-Time (CP-R]

© Xerox Corporation, 1974 1976

Xerox 550 and Sigma 9 Computers

Real-Time and Batch Processing
Reference Manual

90 30 85D

April 1976

The specifications of the softwore system described in this publicotion ore subject to chonge without notice.
moy depend un o specific configurotion of squipment such os odditiono! tope units or lorger

REVISION

This publication is o revision of the Xerox Contro! Program for Real-Time (CP-R)/RT,B8P Reference Manual,
Publication Number 90 30 85C (doted Jovember 1974). This revision incorporates changes thot reflect version DOO

of the CP=R system. :

RELATED PUBLICATIONS

Title

Xerox 550 Computer Reference Manuo!

Xerox Sigma 9 Computer Reference Manual
- Xerox Control Program for Real-Time (CP-R)/OPS Reference Monua!

Xerox Control Progrom for Real-Time (CP-R)/Systein Technicel Monua!
Xerox Control Progrom for Real-Time (CP-R)/RY,BP User's Guide

- Xerox Charocter-Oriented Communications Equipment/Reference Monual
{Models 7611-7616/7620-7623)

Xerox Mathematical Routines/Technica! Manuol

Xerox Assembly Program (AP)/LN,OPS Reference Manual
' Xerox SL-1/Reference Monuo!

Xerox Extended FORTRAN [IV/LN Reference Monuc!
.Xerox Extended FORTRAN 1V/OPS Reference Monual
Xerox Extended FORTRAN/Librory Technice! Manual

Xerox Avaoilability Features (CP-R) Reference Manual

Publication No.
%0 30 77
90 1733
90 30 86
%0 30 88
90 30 87

90 09 81
90 09 06
§0 30 00
90 16 76
90 09 56
90 11 43
901524
903110

Mnr;uol Content Codes: 8P - botch processing, LN - languoge, OPS - operations, RP - remote processing,
RT - recl-time, SM - system management, TS - time=sharing, UT - utilities.

¢

2 B

The owailobility or performance of some feotures
s should It their Xerox soles representative

for detoils.

L1

Y.

PREFACE _
COMMAND SYNTAX NOTATION
GLOSSARY

1. INTRODUCTION

Operating System

CP=R Terms ond Processes

Job

Task

Load Module

Program

Foreground

Background

Terminal Job Entry System

Temp Stacks
Data Control Block

Function Parameter Table

Task Control Block

Program Control Block

Ro!l-Out/Roli-In

Reentrant Subroutine

Philosophy of Operation

Recl-Time Processing

Batch Processing

CP=R Functions

Secondary Storage Utilization
Job Accounting

Public Library

Symbionts

Contro! Task

Overlays
Memory Protection

Disk Write Protection

Language Processors

Service Processors

Overlay Looder

RADEDIT
Edit

Bockground Job Organization

Foreground Job Organization

Input/Output Specifications
Physical Device Nomes

Disk File Identifiers

Operational Labels

Resolving 1/0 Medium Name
Ambiguities

xi

xiii

-

—
—

2. CONTROL COMMANDS 12
Job Control Processor 12
System Control Commands 13

JOB 13
ASSIGN 13
LOAD 15
ATTEND 15
MESSAGE 15

~ O VONNNOIGGCOCOOOLULLVALWOWWRNNNNNNNRNN = = et et oot ol s -

" CONTENTS

LIST

PAUSE

cC

LIMIT

STDLB

ROV

RUN

INIT

SJOB

BATCH

ALLOBT

Dump Control Command

PMD

Input Control Commends

EOD

FIN

Utility Control Commands

PFIL, PREC
SFIL

REWIND

UNLOAD

WEOF

DAL

Processor Control Commands

Processor Interfoce with CP-R

JCP Messages

OPERATOR COMMUNICATIONS
CP-R Messoges

Trap Handler Messages

Output Message Formats

Operator Key=In

Combined Key-Ins
Device Control

1/0 Key-In Format

Cord Reader Messages/Key-Ins
Card Punch Messages/Key-Ins
Disk Pack Messages/Key-ins

Disk Data Protection .

Line Printer Messeges/Key~Ins
Magnetic Tape Messages/Key-Ins

INPUT/OUTPUT OPERATIONS

Permanent Files

Temporary Files

File Organization

Blocked Files

Unblocked Files

Compressed Files

Disk Access Methods -

Sequential Access

Direct Access

Device Access

Disk Pack Files

Extensible Files

1/0 Queueing

1/0 Cleanup and 1/0 Start

‘

2255555555052 2 B2

=

5.

Sharing DCBs Among Tasks

Sharing 1/0 Devices Among Tasks
Sharing Dizk Files Among Tasks and Jobs
1/0 End Action
Reserving /O Devicas for Foreground Uke
Device Praemption
Direct 1/C Execution (10EX)
Keyboard-Printer Edited 1/0
Logical Devices
Operational Labels
Data Control Blocks (DCBs)

DCB Creation
DCB Assignment
DCB Formai
Error ond Abnorma! Conditions
1/0 System Calls
Open a File
OPEN
Close a File
CLCSE
Reod o Data Record
READ
Write o Data Record
WRITE
Rewind, Unload, and Write EOF Functions —__
REW
UNLCAD
WEOF
File ond Record Positioning Functions
PFIL, PREC
ALLOT, DELETE, ond Truncate Functions
ALLOT
DELETE, TRUNCATE
Allot or Delete Symbiont File
JOB
Print and Type Functions
PRINT, TYPE
DEVICE
Device Control Functions
Check Correspondence of DCB Assignments ——
CORRES
ASSIGN
GETASN
JOEX
STDLB

STOPIO, STARTIO
USER-TASK SCHEDULING AND OPERATION

Scheduling and Loading Programs
Loading ond Terminating Foreground

. Secondary Tasks
Queveing Primary Foreground Program
Run Requests
Lloading and Reieasing Primary Foreground

Programs
Looding and Executing Background Programs
Task Controi Block (TCB)

Primary Task Control Biock Format
Progrom Control Biock (PCB)

PCB Format

User Temp Stack
CP-R Temp Stack

FEERRGERXEBRES

NN

74
74

74

" Master and Slave Modes 77

Overlay Segment Operations 77
Trap Handling .78
CAL Hondling 78
Return Functions 78
Interrupt Control 79
Connecting ond Disconnecting Primary
Tasks to Interrupts 79
Arming, Disarming, Enabling, end
Disabling 79
End-Action 79
System Function Call Formots 80
KJOB 80
SJOB 81
SETNAME 82
RUN 83
RLS 84
INIT 84
SCHED 85
INT : 87
pC 87
EXTM 87
SIGNAL 88
POLL 90
POST N
ENQ 92
DEQ 93
TRAP 94
JTRAP 94
TRTY 95
TEXT 95
TRTN 95
EXIT 95
EXDA 95
TERM 95
ABORT 96
CONNECT, ARM, DISARM, DISCONNECT . 96
CALRTN 99
ENABLE, DISABLE, TRIGGER o 99
START 99
sTOP 100
STATUS, MODIFY 100
MASTER, SLAVE 102
SEGLOAD 102
WAIT 103
TIME 103
GETTIME 104
STIMER 104
ERRSEND 105
ALARM 106
RECALARM 106
6. CP-R MEMORY MANAGEMENT 107
Real Memory Allocation - 107
CP=R System Memory 107
Foreground Private Memory 107
Foreground Preferred Memory 107
Secondary Task Memory 109
Primary Task Memory Allocation 109
Virtual Memory Allocation 109
System Virtual Memory 109

Task Virtual Memory 109

[T et e .

Reserved Pages

Access Protection

Software Segmentation

Shoring Segments

Segment Access Protection

Secondary Task Structures

Linking o Program in Real Versus
Virtual Memory

Linking a Program using Simplified Memory

Management
Memory Management System Calls
ACTIVATE

DEACTIVATE

ERASE

GETPAGE

RELPAGE

LOCK

UNLOCK

PREFMODE

Roll-Out/Roll-In

7. ASYNCHRONOUS OPERATION CONTROL

Check Completion
CHECK

DELFPT

WAITALL

WAITANY

TEST

8. CpP-R DEBUG SERVICE

Debug Call

DEBUG

Method of Operation
Debug Input

Debug Output

Debug Trap Control

Debug Commands

Debug Command Syntax

iorwzmcvz“;ﬁ)

Debug Snapshot

S

Debug Error Messoges

9. CP-R MEDIA SERVICE

Key=-In Conversions .

Foreground Conversions

109
110
110
n2
n3
n3

114

s
15
115
16
116
né
nz
1s
ns
119
19

121

12}
121
122
123
124
124

126

126
126

127
127
128
128
128

129
129
129
130
130
130

131
131
131
31
131
131
131
132

134

134
134

10.

MEDIA Processing
MEDI]A Service Call . 134 ..
MEDIA : ~134
MEDIA Key=Ins : —. 135
Conventions - 137
Messages —_— 137
OVERLAY LOADER ; 138
Overview 128
Functional Flow 138
Limitations 138
Overlay Load Modules 138
Overlay Structures 139
Overlay Restrictions 139
Overlay Control Commonds 140
Syntax 140
Order of Control Commands 140
10LOAD 140
:ROOT 142
SEG 143
:LIB 145
JINCLUDE 145
EXCLUDE 146
‘COMMON 146
:RES 146
:LCOMMON 147
:MODIFY 148
:ASSIGN 149
:PUBLIB 149
:LMHDR 150
Program File 150
Root Segments 150
Overlay Segments 151
Temporary Disk Files 151
Loader-Generated ltems 151
Program Control Block 151
Data Control Block 151
DCBTAB 151
OVLOAD Table 151
Temp Stacks 151
External Definitions 151
Libraries ' 152
System and User Library Libraries — 152
Assembly Language — 152
Entry Address 152,
System ond User Libraries on Disk 152
Constructing and Maintaining Library —————153
Public Libraries 153
Calling the Public Libraries — 153
Librory Protection - 153
Releasing a Public Library 153
Forming a Public Library — 153
Map - 153
Error Diognostics - —157
User Load-Time Assigns —18
M:DCB and F:DCB — 165
Run=Time Assigns : 185
Load-Time Assigns 165,
FORTRAN Interface — 165
Common Allocation — 165 L
CONNECT 166

1.

12,

Calling Overiay Segments 166

Main Program Nome ond Entry 166
Labeled COMMON Names 166
Blonk COMMON Names 166
Core Layout at Execution Time 166
RADEDIT 168
Operating Charocteristics 168
File Allocation 168
Skipping Bad Tracks 168
System and User Library Files 169
Algorithms for Computing Librory File Sizes 169
Disk Area Protection 170
Calling RADEDIT 170
Command Formats 170
RADEDIT Commands 170
:ALLOT 170
LOPY 7
:DPCOPY 172
«DELETE 173
«CLEAR 173
SQUEEZE 173
:TTRUNCATE 174
:MAP 174
SMAP 174
:LMAP 175
CATALOG 176
:DUMP 176
:XDMP 177
SAVE 178
:RESTORE 178
+BDSECTOR 178
:GDSECTOR 179
:END 179
Error Messages 179
Disk Restoration Mesages 179
PREPARING THE PROGRAM DECK 184
AP Exomples 184
Assemble Source Program, Listing Output 184
Assemble Source Program, Listing Output,
toad ond Go Operations 184
Assemble and Load a Program Written for Un~
mapped (RBM) Background Execution 184
Assemble from Compressed Deck with Source
ond Updates, Listing Output —_____ 184
Assemble Source Program, Compressed Output
on Cards, Listing Output — 185
Assemble Source or Compressed Program in
Batch Mode, Listing Output 185
Assemble Source Progrom, Compressed Output
on Disk File, Listing Output 185

Assemble Compressed Deck from Disk File,

Source Updates from Cards, Listing

Output 185
Assemble Source Program, Write Compressed

Output on 9-Track Tape, Listing Output __ 186
Assemble Compressed Progrom from $-Track

Tape, Listing Output 186

FORTRAN Job Examples 187
Combined FORTRAN Compilations, Plus

FORTRAN Compile and Execute — 187
Compile and Execute FORTRAN Source

Program with Re.al-Time Linkages 188
Compile and Execute Program Using LS,
BO Defoult Options 189
Compile a FORTRAN Program and Setup for
Execution in Foreground Area 190
Overlay Loader Examples 191
Botch, Using GO Links 191
Segmented Background Job 192
Foreground Job Examples 193
Llood and Execute Foreground Program eeo 193
Lood and Execute Segmented Foreground
Program 194
Load Two Foreground Secondary Programs
Sharing a Read=-and-Execute Procedure 195
Load Foreground Secondory Program with a ~
Segment Fixed in Real Memory 195
lood Program with Dynamically=Allocated
Segment 196
13. LINE EDITOR (EDIT) 197
Introduction 197
Calling Edit 197
Subject File Format 197
Sequence Numbers 197
File ldentifiers 197
Input/Output Conventions 197
Multiline Records 198
Break Function 198
Error Response 198
EDIT Commands 198
Command Structure 198
File Commands 199
EDIT 199
SAVE 199
END 199
SEQ 199
8p 199
Command Streom Control 200
GO and RET 200
Record Editing Commands 201
IN 201
1S 202
DE 202
TY 202
TC 202
TS 203
MD 203
MK . 203
FD 204
FT 204
23 204
RN 204
(ol V) 205
SE 205
SS 205
ST 205

(

T T

Y
i

o~

Introrecord Editing Commands

Yond N 206

CL 207

S 207

D 207

P 27

F 208

(o) 208

E 208

Rorl 208

L 208

R 208

A 209

C 209

DE 209

L] 210

TY 210

Ju 210

NO 210

RF M1

Messages 211

Edit Command Summary n

14, TERMINAL JOB ENTRY 220

Terminal Executive Longuage 220

EDIT 220

MUST 220

The Terminal 220

Terminal Operations 220

Initiating and Ending On-Line Sessions 222

Typing Lines 222

Typing Commands 224

Detecting ond Reporting Emors 224

Interrupting CP=R 224

Paper Tope Input 225

Summary of Teletype Functions 225

Terminal Executive Longuage 225

Major Operations 226

Minor Operations 226

Error Handling 226

TEL Commands 226

TABS 226

OFF 226

MESSAGE 226

STDLB 226

MEDIA 226

BATCH 226

JOB 227

CANCEL 227

SETNAME 227

RUN 227

INIT 227

DEBUG 227

EXIT 227

STOP 228

START 228

EXTM 228

QUIT 228

CONTINUE or GO 228
Interrupting, Resuming, and Terminating

Executions 228

15,

16.

MUST Operations : 228
TJE Account Maintenance 228
Stondord Symbols, Codes and Correspondences ___ 229

Standard Symbols and Codes 249
Standard Character Sets : 229
Control Codes 229
Special Code Properties .22
SYSTEM GENERATION 238
BOOT26 236
SYSGENLOAD 238
SYSGEN/SYSLOAD 238
SYSGEN 238
SYSLOAD 238
Memory Allocation 238
Disk Allocation 246
Tables Allocatedand Setby SYSGEN ________ 248
Input Parameters 24y
SYSGEN Control Commands : 250
:PROC 250
sMONITOR 250
:RESERVE 251
CHAN 252
:DEVICE 253
ALLOBT 256
MDEF 256
MOD 257
€OC 257
:STDLB 258
{CTINT 258
:INTLB 258
sPUNCH 259
«FIN 259
SITE i 259
sCOMMENT 259
$SYSLD 259
SYSLOAD 260
MAP Option 280
All Option 261
FAST Option 261
Override Option (OVR) 261
Update Option 261
Allocation of SP Area 262
SYSGEN and SYSLOAD Alams 262

Loading System Processors and User Programs

HARDWARE CONFIGURATION GUIDELINES 266
Introduction 266
Hardware Interrupt Requirements 266
Main Storage (Memory) Requirements — 268
Memory Space Requirements for CP-K — 268

Memory Space Requirements for Cr-r
Processors - 268

Memory Space Requirements for User-
Foreground Programs 269
Secondary Storage Requirements 269
BT Area Storage Requirements 270

User Secondary Storage Requirements 270
Removable Disk Packs ond Cartridges — 270

vii

Peripheral Equipment Requirements and

Options — 272
Additional Peripheral Options —________ 272
Miscellaneous Hardware Options — 272
Register Blocks 272
Power On/Off 272
INDEX : k<]
APPENDIXES
A, SYSTEM CP-R 273
System CP-R Procedure References 273
Default Form 273
In-Line FPT Form 273
FPT-Only Form 273
CAL-Only Form 273
Parameter Field 273
System CP-R Errors 274
CAL-Parometer Groups 274
Specific CAL-Parameter Groups — 274
B. XEROX STANDARD COMPRESSED

LANGUAGE 289
C. REAL-TIME PERFORMANCE DATA 290

Response to Interrupts by Centrally Connected
Tosks 290
1/0 Interrupt 290
Interrupt Inhibits 250
Secondary Tosk Dispatch Time 290
Console Interrupt 290
Overlay looding 290
D. COOPERATIVES AND SYMBIONTS 291
Cooperative 291
Symbionts 21
Symbiont-Cooperative Housekeeping —________ 291
E. JCP LOADER 293
Looding Nonsegmented Programs — 293
Looding Segmented Programs 293
F. SYSTEM INITIALIZATION AND PATCHING 294

viii

Input Options 294
Quick Patches 294
Patch Commend Formats 295
Patch System Overlay or JCP 295
Patch Simulation Routine 295
Patch CP-R Monitor 295
Patch System Tables 295

Modify Patch Area 25

Troce Command Formats 295

_ Clear Command Format 26
JIEND Commeond Format 296
System Patching ond Tracing Diognostics o 296

CHARACTER-ORIENTED COMMUNICATIONS

ROUTINES 297
System Interface 297
User Program Interface 298
Preparation and Use of COC 298
COC Commands and Calling Sequences 298

Coll CSTART (Initiote COC Activity) e 298
Call CSET (Set Line Toble Parameters) 299
Call CWRITE (Write Output to @
Terminal) 300
Call CREAD (Accept Input from a
Terminal) 301
Cell CMOVE (Move Input to o User Area) 302
Call CHECK (Check 1/0 Line Status) 303
Call CSTOP (Terminate COC Activity) 303
1/0 Interrupt Routines 304
Input Interrupt Processing 304
Output Interrupt Processing 304
End-Action Processing 304
Special Action Processing 304
Break Signal Handling 305
Escape Sequence Processing 305
COC Database 305
COC Parameters 305
Line Control Tables 305
Line State Table Format 305
Termingl Mode Table Format 306
Terminal Type Table (COCTERMN) 307
Buffer Pool 307
Stondard Input/Output Translation Tables . 307
Input Special Action Table 307
Escape Sequence Tables amn
Output Conversion (EBCDIC-USASCII) amn
JOB MANAGEMENT 313
Concept of a Job 313
TASK MANAGEMENT 314
Disconnecting Primary Tasks from Interrupts 314
Event Monagement 314
RESOURCE MANAGEMENT 316
!
PERIODIC SCHEDULING 318
ERROR LOGGING 319
SYSTEM ALARM PROCEDURES 320

- ——

n,
12,
13.
14,
15.
16,
17.
18.

19.

21,

. Typical PROGRAM Map

CP-R SERVICE CALLS

ERROR AND ABNORMAL CODES

Type Completions (TYC)

Error Codes

VOLUME INITIALIZATION
Introduction

Loading VOLINIT

VOLINIT Commonds

FIGURES

Overlay Structure

Loading Overlay Loader from Cards

Display Format

Error Summary Exomple

Task Status Format

User Temp Stack Format ot CAL Processor
Entry

TCB for Centrally Connected CALs

Example of Memory Organization for

64K System

CP-R System Memory

Virtual Memory Organization

Segment States

Tree Structure Options

An Overlay Program

Overlay Example

Object Module from GO File

:L1B8 Command Usage

sEXCLUDE Commond Usage

DSECT Allocation Example

:tMODIFY Command Items Example

Blonk COMMON Allocation by Default

an

322
322
322
328
328

328

16

&

4)

98

98

108
108
110
n2
ns
139
144
145
145
146
147
149
155

165

26,
27,
28,

30.
31.

32.

10.
1.
12,
13.

14,

8lank COMMON Option 166

- Standard Core Layoutof a Program ' 167

Permanent Disk Area Before Squeezing ——_____ 169

Permanent Disk Areo After Squeezing 169
MAP SP Output Exomple 175
A Multiline Record 198
Mode! 33 Teletype Terminal Keyboard — . 221
SYSGEN Map Example 239
Disk Allocation Exemple 247
Linking the CP-R System Processors

(Abbreviated) 265

CP-R Lowest-Cost, Minimum Configuration —__ 266

Typical Configuration 267
CP-R Disk File Manogement . 7]
Specific CAL-Parometer Groups w274
Information Flow Through Cooperative

and Symbionts 292

TABLES

1/0 Device Type Codes 8
Channel or Cluster/Unit Designation Codes —__ 8
Device Designation Codes 8
Disk Area Codes 9
System Operational Labels 9
JCP Messages 24
CP=R Messages and Responses 26
Stondard Operator Key-Ins 32
Teminal Job Entry Key-Ins 37
Symbiont Key=Ins A 58
Media Conversion Key=Ins - 39
System DCBs 50
Line Printer Format Control Codes __ , 52
JOEX Function Status Returns __.______. 70

15.
16.
17.
18.
19.

21,

N

24,
25,
26.

8

31
32,

m

Segment States Relative to o Task
Real and Virtual Memory Program Linkage —_ 114

Roll-Out Levels 120
Debug Error Messages 132
Overlay Looder Diognostics 157
RADEDIT Error Messages 179
Disk Restoration Messages 182
Edit Messoges 2”m
Edit Command Summary 213
On-Line User Processors 20
Summary of Teletype Services _________ 225

230

CP-R 8-Bit Computer Codes (EBCDIC)
CP-R 7-Bit Communication Codes (ANSCII) __ 231
CP-R Symbol-Code Comrespondences 232
ANSCII Control-Character Translation Table __ 236

Disk Area Defoult Sizes 247

GO, OV, X1-X9 Default Sizes __________ 248

System Device Model Numbers and
Parometers (Disk Devices) — 254

System Device Model Numbers and

Parameters (Non=Disk Devices) 255

SYSGEN ond SYSLOAD Alarm Messages —___ 262

*

Interrupt=-Structure Summary 268
Processor Availability in Sample

Configuration 268
Comparison of Secondary Storage

Devices 269
System Patching Diagnostics 296
COC 1/0 Commands 298
COC Parameters 305
Line Control Table Items : 306
Input Tronslation Table 308
Input Conversion 308
Special Action Table 309
Output Conversion (EBCDIC-USACII) 312
Type Completion Codes 322
Monitor Error and Abnormal

Codes 323
TYC, BUSY, and R10, Byte 0

Settings 327

" PREFACE

This manual is the principal source of reference information for the real-time and batch processing features of CP-R
(i.e., job control commands, system procedures, 1/O procedures, program loading and execution, hardware inter-
rupt and software interface, and service processors). The purpose of the manual is to define the rules for using back-
ground processing, real=-time features, hardware mapping, and virtual memory capabilities. Manuals offering other
levels of information regarding CP=R features are outlined below.

e The Control Program for Real-Time (CP-R)/User's Guide, 90 30 87, describes how fo use the various batch and
real-time features that are basic to most installations. It presents the information in a semitutorial format that
offers the user a job-oriented approach to learning the features of the operating system.

e The Control Program for Real~Time (CP-R/OPS Reference Manual, 90 30 86, is the principal source of reference
information for CP-R computer operators. It defines the rules for operator communication with the system (i.e.,

key=-ins and messages) system start-up and initialization, job and system control, peripheral device handling,
and recovery procedures.

e The Contro! Program for Real-Time (CP-R)/Systems Technical Manual, 90 30 88, describes the internal func-
tions of the operating system. It is intended for use with the listings supplied with each CP-R system for pur-
poses of system maintenance.

e The Availability Features (CP-R) Reference Manual, 90 31 10, describes the availability features that will
rapidly identify a system problem as to either hardware or software malfunction and then further define the
problem via software diagnostic criteria,

Information for the language and applications processors that operate under CP-R is also described in separate man-
vals. These manuals are listed in the Related Publications page of this manual.

xi

COMMAND SYNTAX NOTATION

Notation conventions usec] in command specifications and exomples throughout this manual ore listed below.

Notation

Description

lowercase letters

CAPITAL LETTERS

[]

Numbers and
special characters

Subscripts

Superscripts

®EO

Lowercase letters identify an element that must be reploced with o
user-selected value.

CRndd could be entered as CRAD3.

Coapital letters must be entered as shown for input, and will be printed as
shown in output.

DPndd

An element inside brackets is optional. Several elements placed one under
the other inside o poir of brockets means thot the user may select any one or
none of those elements.

(keYm]

Elements placed one under the other inside o pair of braces identify a re-
quired choice.

means “enter DP followed by the volues for ndd".

means the term "KEYM" moy be entered.

[::] means that either the letter A or the value of id must be entered.
The horizontal ellipsis indicates that o previous bracketed element may be
repected, or that elements have been omitted.

name [, name].. . means thot one or more name vaolues may be
entered, with o comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X'IEF'

. means that there are one or more state-
BYTE DATA,3 BA(L(59)) :;::s' :{c:;tted between the two DATA

Numbers that appear on the line (i.e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e.g., (234).

Subscripts indicate o first, second, etc., representation of o parameter that
hos a different value for each occurrence.

sysidy, sysid2, sysid3 means that three successive values for sysid
should be entered, separated by commas.

Superscripts indicate shift keys to be used in combination with terminal keys.
¢ is control shift, ond s is cose shift.

LSS means press the control and case shift (CONTROL and SHIFT) and
the L key.

All terminal output is underscored; terminal input is not.

JRUN means that the exclamation point was sent to the terminal, but
RUN was typed by the terminol user.

These symbols indicate that an ESC (&), corrioge return (69), or line feed
(©®) character has been sent.

1EDIT @ means thot, after typing EDIT, o carrioge return character
has been sent.

" BLOSSARY f

active foreground program o program is active if it is
resident in memory, connected to interrupts, or in the
process of being entered into the system vio @ IRUN
control command.

asynchronous events independent events that may be
toking place concurrently to task execution (e.g.,
a read from magnetic tape or an STIMER service
call).

background area that area of core storage allocated to
batch processing. This area may be checkpointed for
use by foreground programs,

background program any program executed under moni-
tor control in the background job, These programs are
entered through the batch processing input stream.

batch job @ job that is submitted to the batch job stream
with an operator keyin or through an on-line terminal
(using the BATCH command).

binary input input from the device to which the Bl
(binary input) operational label is assigned.

centrally connected interrupt an interrupt that is con-
nected to @ monitor interrupt routine that first saves
the environment of the system and then switches the
environment to that of the task that gets control when
the interrupt occurs.,

checkpointed job a partially processed background job
that has been saved in secondary storage along with
all registers and other "“environment" so that the
job can be restarted when a foreground task no
longer requires the borrowed background memory
and all currently octive foreground activity has
completed.

control command any control message other than a
key-in. A control command may be input vio any de-
vice to which the system command input function has
been assigned (normally o card reader).

control message any message received by the monitor
that is either a control command or a control key=in

(see "key-in").

cooperative @ monitor routine that transfers information
between a user's progrom and disk storage (also see
“symbiont").

Data Control Block (DCB) a tablein the executing pro-
gram that contains the information used by the monitor
in the performance of an 1/O operation.

dedicated memory core memory locations reserved by
the monitor for special purposes such as traps, inter-
rupts, and real-time programs.

directly connected interrupt an interrupt which, when
it occurs, causes control to go directly to the task;
e.g., execution of the XPSD instruction in the inter-
rupt location gives control to the task rather than first
going to a monitor interrupt routine,

disk pack a secondary storage system of removable ro-
tating memory. For CP-Rpurposes, disk pack and RAD
are synonymous unless otherwise noted,

dispotcher aset of CP=R routines that schedule sec-
ondary tasks on a software priority basis, There may
be more than one dispatcher in a given system,

dummy section a type of program section that provides
a means by which more than one subroutine may refer-
ence the same data (via an external definition used as
o label for the dummy section).

end record the last record to be loaded in an object
module or load module.

error severity level code a four-bit code indicating the
severity of errors noted by the processor, This code
is contained in the final byte of an object module.

execution location a value defining the origin of a re-
locatable program, to set the address at which program
loading is to begin.

external definition a symbolic name that is declared to
be "knowable" outside the range of the object module
in which it is defined; o "global " symbol. An external
definition allows the specifiedsymbolic name to be used
in external references (see below).

external reference o reference to a declared symbolic
name that is not defined within the object module
in which the reference occurs, An external refer-
ence can be satisfied only if the referenced name

is defined by an external definition in another ob-
ject module.

file management routines monitor routines that interpret
and perform /O functions.

foreground area that portion of memory dedicated speci-
fically for foreground tasks and programs.

foreground program a load module that contains one or
more foreground tasks. il

-
foreground task @ body of procedural code that is asso-
ciated with an interrupt (primary task)or controlled by
a CP-R dispatcher (secondary task).

Functional Parameter Table (FPT) a table through which
a user's program communicates with a monitor function

(such as an 1/O function).

xiii

GO file
modules formed by a processor.

granule a block of disk sectors containing a specified
number of words.
idle state the state of the monitor when it is first

loaded into core memory or affer encountering o IFIN
control command. The idle state is ended by meons
of a IC key-in.

installation control command any control command used

during system generation to direct the creation of a
CP-R system,

job a job is a collection of one or more related tasks.
A foreground job is composed of one or more related
foreground tasks. A background job is composed of
one or more job steps each comprised of a single task.
Tasks executed in the background are not connected
to interrupts. Background job steps are processed
through the batch input stream. The job concept is
used for resources (such as files or devices) that are
shared at the job level.

key=in contro! information entered by the console op-
erator via a keyboard.

keyword @ word, consisting of from one to eight char-
acters that identifies a particular operand used ina
control command or operator key-in.

load item in object modules, a load-contro! byte fol-
lowed by any additional bytes of load information per-
taining fo the function specified by the control byte.

load mop a listing of significont information pertaining
to the storage locations used by a progrom.

load module aon executable program formed by using
relocotable object modules (ROMs) and/or library
object modules as source information. Primary lood
modules contain one or more primary tasks; secondary
lood modules contain a single secondary task.

logical device @ peripheral device that is represented
in a program by an operational label (e.g., BI or BO)
rather than by a specific physical device name.

long wait when a secondary task performs on asyn-
chronous service with wait, the task may specify
that the WAIT is to be 'long-wait'. Long wait
tasks are selected for roll-out before non long-wait
tasks, overriding the strictly priority driven roll-out
algorithm,

monitor o program that supervises the processing, load-
ing, ond execution of other programs, i.e., the con-
trol program.

xiv

a temporary disk file of relocotable object 3

(X}

object deck a cord deck comprising one or more object
modules and control commands. ,

object longuage the standard binary language in which
the output of o compiler or assembler is expressed,

object module the series of records containing the load

information pertaining to a single program or subprogram.

Object modules serve as input to the Overlay Loader
to form the load module.

operational labe! a two—-character symbolic name used
to identify a logical system device.

option on elective operand in a control command or
procedure call, or an elective porameter in o Function
Parameter Table.

OV file is a temporary disk file that contains an exe-
cutable progrom formed by the Overlay Loader if o
program file name was not specified at load time.
Used primarily to test new programs or new versions
of programs.

Overlay Looder a processor that links elements of over-
lay programs (ROMs) and forms executable programs.

overlay program a segmented progrom in which the
segment currently being executed may overlay the
core storage area occupied by a previously executed
segment. :

parameter presence indicator a bit in word 1 of @
Function Parometer Table that indicates whether o

particular parameter word is present in the remainder
of the table.

physical device a peripheral device that is referred to
by a name specifying the device type, 1/O channel,
and device number (also see "logicol device").

postmortem dump a listing of the contents of a specified
area of core memory, usually following the cbortive
execution processing of a program.

primary reference an external reference that must be
satisfied by a corresponding external definition (capa-
ble of causing loading from the system library).

primary task o body of code that is connected to o hard-
ware interrupt and that gains control of the CPU
when that interrupt becomes active.

Program Trap Conditions (PTC) two words that indi-
cate trap status (set or reset) end trap exif Bddress
respectively.

Relocatable Object Module ROM) @ program, or sub-
program in the form generated by a standard processor
such as Macro=-Symbol, FORTRAN, etc.

resident program a program that has been loaded into o
dedicated area of core memory.

g

ROM Relocotable Object Module (see above).

secondary reference an external reference that moy or
may not be satisfied by a corresponding external defi-
nition (not capable of causing loading from the system
library).

secondary storage any rapid-access storage medium
other than memory (e.g., RAD or disk pack).

secondary task o body of code whose execution is sched-
uled by o CP-R dispatcher.

segment looder o monitor routine that loads overlay seg-
ments from disk storage ot execution time.

source deck o cord deck comprising ¢ complete program
or subprogram in symbolic EBCDIC format.

source language a language used to prepare a source
program (and therefrom a source deck) suitable for
processing by an assembler or compiler.

symbiont a monitor routine that transfers information
between disk storage and aperipheral device indepen-
dent of and concurrent with job processing,

symbolic input input from the device to which the SI
(symbolic input) operational label is assigned.

symbolic nome an identifier that is associated with some
particular source program statement or item so that sym-
bolic references may be mode to it even though its
value may be subject to redefinition.

synchronous events

events that must take place
sequentially.

system librory a group of standard routines in object
language format, any of which may be included in o
program being created,

task see '"primary task " and "secondary task".

taskname identical to a load module name (Imn) unless
redefined by the SETNAME CAL. All tasks within a
load module have the same taskname.

temp stack push-down stacks created by the Overlay
Loader and used by the monitor and system library routines.

time=sliced secondary tasks may be ‘time-sliced' in
which case CP=-Rwill cause the task to relinquish con-
trol of the CPU after having executed for a defined
period of time (a quantum of usually 100 milliseconds).
After the expiration of o task's quantum the task is
placed at the end of the CP-R dispatch queuve in pri-
ority order, This in effect causes time-sliced tasks of
equal priority to be selected for execution in a 'round~
robin' fashion. The default priority for time-sliced
tasks is X'FFFF',

xXv

f

m

)

Q«

b N

1. INTRODUCTION

OPERATING SYSTEM

The Xerox Control Program for Real~Time (CP=R) for Xerox 550
and Sigma 9 Computers is the major control element in
aninstollation's operating system. Operatingin a real=time
environment, CP-R provides for concurrent background/
foreground processing with emphasis on foreground operations.

The operating system consists of CP-R, language translators,
service programs, batch (bockground) user's progroms, ter-
minal job entry system, and real-time (foreground) user's
program. In general, CP-R governs the order in which
the other programs are executed and provides services
common to all of them,

The number, types, and version of programs in an oper-
ating system vary, depending upon the exaoct requirements
at a particular installation. Each operating system should
consist of a closely integrated set of service and control
routines and processing programs specifically 'tailored’ for
a given range of applications.

As the requirements of an installation increase, the oper-
ating system con be enlarged, modified, or updated. The
ability to adapt to new requirements is inherent in the sys-
tem design. Once a system is generated, it can quickly
be expanded to include users® programs, data, and system
libraries.

A user's program and data may either be temporarily in-
corporated in the operating system or remain a part of the
system for an extended period of time.

The operating system is self-contained ond requires oper-
ator intervention only under exceptional conditions. Op~
erating procedures are given in the CP-R/OPS Reference
Manual, 90 30 86.

CP-R TERMS AND PROCESSES

The following items are either unique to the CP-R system
or have specific meaning within the CP=R context. Terms
and processes not defined below are fully explained in the
appropriate chapter.

JoB

Ajobis a collection of one or more tasks which the user has
specifically orgonized to shore resources (e.g., operational
label definitions, nonsharable peripherals, file table en-
tries). Ajob may beinitiated (SJOB)and terminated (KJOB)
by system service calls or operator key=-in. Each job in
CP-R is associated with a user supplied account name.

TASK

A tesk is a body of procedural code that is capable of
gaining control of the CPU. A primary task is one that is
associated with o specific interrupt and gains control of the
CPU when that interrupt becomes active. A secondary task
goins control of the CPU when scheduled by o CP-R soft-
ware dispatcher. ’

LOAD MODULE

A load module is a body of procedural code and data that

is identifigble by name. A load module is created at link-
edit time by the Overlay Loader (OLOAD)from object mod-
uvles, ond exists after the link-edit operation in memory-
imoge form on disk storage. A lood module is identified
by name so that it may be loaded or terminated on request.
Background lood modules are loaded by contro! commands;
foreground load modules can be loaded or terminated upon
request through operator key-in, control command, or a sys-
tem call from a foreground task.

Load modules when looded into memory become tasks and
retain the identification of the lood module as their task-
nome. Primary modules may contain more than one primary
task by virtue of multiple connections to interrupts. Secon-
dary load modules always contain only a single task.

For the purposes of this manual o program is synonymous
with a load module.

The foreground is the set of all tasks in the system that are
typically associated with real-time processes and are speci-
fically not executing in the bockground job. The activa-
tion sequence of foreground tasks is controlled on o pri-
ority basis by the hardware-interrupt system and the CP-R
software-scheduling services. Foreground tasks are guaran-
teed memory protection from background processes.

-
-
BACKGROUND
The background is a job in which noncritical tasks can
execute so as to use ony available CPU time ofter the
real-time requirements are satisfied. In contrast to fore-

ground tasks, background tasks are executed serially ond
their sequence is controlled by control commands. They

Introduction 1

be thought of as connected fo the 'null’ interrupt

may
level, below that of oll other tosks in the system.

TERMINAL JOB ENTRY SYSTEM

Terminal Job Entry (TJE) is a terminal support system that
fulfills the user's need for local and remote job entry, A
user may log-on, create files, edit files, submit batch jobs,
build multi-task environments ond debug the environment
via the terminal. TJE is a real-time system that allows the
user to create any foreground structure required,

TEMP STACKS

Temp stacks are sets of memory locations allocated by
the Overlay Loader; one of which is used for dynamic
temporary storage for system functions and the other when
FORTRAN Library subroutines are called. The lotter set
of memory locations is also owvoilable as temporary stor-
age for the user, The temp stacks are "push down" stacks,
that is, they operate in o last-in/first-out fashion, and
are ollocated to a load module.

DATA CONTROL BLOCK

A DCB is atable located in the calling program that contains
information used by CP-R in the performance of an I/O op-
eration, DCBs are the means by which 1/0 information is
communicated between a user's program and the system,
The information required for a particular I/O operation is
either contained in the associated DCB or is given in a call.
The specific information needed for an /O operation depends
on the organization of the datainvolved and the type of op-
eration to be performed,

The device used for 1/O operation is determined by the
contents of the associated DCB when the 1/O operation is
requested by the executing program.

There are both system DCBs and user-crected DCBs. The
system DCBs need only be coded as externa! references in
o system processor or user program; the Overlay Loader will
satisfy these extemnal references at link time by furnishing
a copy of the appropriate DCBs in the program's root. If a
vser is not satisfied with the standard DCB parameters fur-
nished by the Overlay Loader, the system DCBs can be
coded into the user program's root and the DCB name de~
clared as an external definition.

FUNCTION PARAMETER TABLE
An FPT is o table through which o program communicates

with a system service function,

TASK CONTROL BLOCK
A task control block (TCB) is a table containing task-

associated parameters, The space for this table is allo-
cated by the system for secondary tasks and by the user

2 Philosophy of Operation

“for primary tasks, The entries in this table are used and

maintained by CP-R.
PROGRAM CONTROL BLOCK

The PCB is atable containing program=-associated parameters.
The PCB is constructed by the Overlay Loader at link time.

ROLL-OUT/ROLL-IN

Roli-out is the process by which the memory resources ac-
quired by a low=priority task (foreground or background) is
made temporarily available for use by a higher-priority task.
This is occomplished by saving an 'in-memory' image of the
task and its context on secondary storage while its memory
space is required for higher-priority task.

Roll-in is the process by which a rolled-out task is restored
to memory. This is accomplished by bringing the rolled-out
task imoge back into memory, on a priority basis, whenever
sufficient memory resources are available.

REENTRANT SUBROUTINE

A reentrant subroutine can be called by several different
tasks. During execution of such a subroutine, a higher pri-
ority task con interrupt and call the same subroutine. When
the higher priority task has completed execution, control is
returned to the subroutine at the interrupted point. Since
a reentrant subroutine does not perform any instruction
modification and uses the temp stack or a virtual-memory
nonshared context segment for scratch storage, processing
continues as though the subroutine had neverbeen reentered.

PHILOSOPHY OF OPERATION

The system provides for two levels of operation:
1. Real-time, foreground processing.

2. Batch, background processing.

REAL-TIME PROCESSING

Real-time processing, the most critical aspect of multi-
usage, involves reacting to external events (including clock
pulses) typically within microseconds. <

Real-time programs can be either automatically loaded
every time the system is booted from secondary storage or
looded and initiated as needed. The first method is used
when the real-time process normally remains unchanged and
is constantly operative. The second approach is used when
real-time operations are executed periodically or irregu-
larly, os in an experimental icboratory.

A real-time process is assigned machine facilities on a
dedicated basis at initiotion time. These facilities include
disk and memory residency, I/O channels, peripheral de-
vices, and extemnal interrupt lines. Such allocation re-
mains in force until either the process orthe computer operator
terminates the program.

During SYSGEN, @ user con reserve a portion of his fore~
ground area for communication between primary real-time
programs. Locations in this area are called foreground
mailboxes. The start of this area con be referenced through
the system lobe!l FP:MBOX. Upon encounteringan external
reference to FP:MBOX, the Overlay Loader will satisfy
standard symbolic references to a mailbox orea.

The system provides foreground programs with the facility
for direct 1/O operations (called IOEX operations), wherein
the user fumishes the basic hardware commands and does the
necessary error checking and recovery. This type of 1/0
operation provides decreased overhead and greater flexi-
bility as compared to indirect 1/O operations.

Foreground programs can be loaded for execution from o
background job stack by operator key=in, by terminal job
entry commands, or through a system call by o foreground
program, providing the programto be loaded is already on
secondary storage in load-module format. Foreground pro-
grams are responsible for initializing thé interrupt system
and connecting tasks to interrupts. Foreground tasks can be
processed compatibly and concurrently with a background
production job stack.

BATCH PROCESSING

The system is capable of processing a continuous series of
background jobs with little operator intervention. Re-
ducing the need for operator participation ensures faster
throughput, and makes operations less subject to error.

CP-R FUNCTIONS

CP-R controls and coordinates batch (background) and
real-time (foreground) processing. Efficient operation
is assured by minimizing system overhead in resporse to
an interrupt, and by preserving the relative priority of
the tasks.

Reentrant service functions perform 1/0 and control the
interrupt system; other service functions load and initiol-
ize foreground tasks.

Some portions of CP~R ore resident to ensure continuous

operation, Other portions of CP-R are brought into main
memory from secondary storage o requiredto perform specific
functions. These portions ore structured as overlays, thus
minimizing main memory requirements. In addition, proc-
essing programs are retrieved from secondary storage and

they foo can capitalize on overlay techniques fo minimize

main memory requirements,

Secondary scratch storage for service programs, processors,
ond user programs is provided, ond secondory storoge also
accommodates permanent user files. (Permanent user files
on secondary storoge are acquired through a processorcalled
RADEDIT which provides media conversion, listing of files,
and other services in addition to file allocation.)

SECONDARY STORAGE UTILIZATION

A disk storage unit is essential foroperationof the system, It
minimizes main memory requirements by storing all system,
processor, and user-program overlays, yet provides very fast
access whenever on overlay is called into memory.

DISK AREAS

During system generation, secondary sforage is divided into

lorge blocks called disk areas, These areas represent func-

tional groupings of disk files. All files within a given area

have the same software write protection, Since the entire
CP-R system is disk oriented, every job will directly or in~
directly involve the use, modification, allocation, or release
of disk files. Listed below are the standard disk areas and
the types of files that normally occupy them,

e System Program (SP) area contains CP-R, the Account
Inventory file, the Scheduler file, ond the set of lan-
guage transiators used by the local installation, such as
AP and FORTRAN. The area dlso contains the System
Library (i.e., FORTRAN Library/Run~time), and
RADEDIT and Overlay Loader service processors, All
translators and service processors are called by user to
execute in the background.

e Foreground Program (FP) area contains a collection of
foreground programs ond on optional user library and
Public Libraries. User~library routines are included in
the user's load module at "link time". Public Libraries
are groups of run—time, reentrant routines shared by o
number of programs.

e Background Program (BP) area contains the set of per~
manent user programs that execute in the background.

e User areas (any two~character name) allow flexible sub~
division of the disk space fo aid the individual instal~
lation in controlling disk storage use. User disk areas
provide both use control and file name uniqueness for
the files within them, Use control is determined by the
area protection type, This may be public, background,
foreground, system, or JOEX, Public and background
areas moy be read or altered by efther background or
foreground users. Additionally, pubfic arecs provide a
pool of space for area-independent file activity. Nor-
mally, foreground areas may be altered only by fore-
ground users, and system arecs may not be altered.
However, both types may be read by any user, 1OEX
areas may be usedonly by JOEX (Direct Device Control)
services, Files may not be defined in them, File nome
uniqueness is determined by the combination of file name,

CP-R Functions 3

disk file account name, and disk orea nome. This
allows several files to be defined with the some name
ond account, s long as they ore in different disk oreas.
{The data areas, D1 through DF, are considered to be
user oreas.)

e Checkpoint (CK) orea is used by CP-R for roll-out/
roll=in file storage ond to save on image of memory
after a system alarm condition,

o Input Symbiont (IS) ond Output Symbiont (OS) areas
contain files that ore defined ond maintained by sym-
biont routines. Files in the 1S and OS areas con not
be occessed by users,

o JOEXAccess (XA)area contains no directory and hence
no files. This area can be written only by 10EX and
should normally be the only area of the disk that 10EX
is allowed to access.

e Background Temp (BT)areacontains temporary (scratch)
files (X1 through Xn where n is a SYSGEN porameter)
used by bockground progroms for intermediote storoge
in processing. Their use is identical to scratch tapes on
mognetic tape units, Temp files ore automatically de-
stroyed when a new {JOB command is encountered in a
job stack, and thus there is noway to save dataon temp
files from one job to another, They may, however, be
saved ocross job steps,

The GO and OV files are special temporary files in
the BT area. The GO file receives relocatable object
modules (ROMs) formed by o language processor if the
GO option was specified or by default. It is used by
FORTRAN IV ond AP programs. The OV file receives
executable progroms formed by the Overlay Looder,
ond is used primarily to test @ new program that has no
permanent file defined, or to test a new version of o
program without destroying the current version. A pro-
gram in the OV file is called for execution via an
IROV control command.

Note that both GO and OV are used for communication
between job steps but not jobs. There is no monitor pro-
tection for these files between one job and another.

JOB ACCOUNTING

Bockground job occounting is anoption selected ot SYSGEN,
To correctly colculate the elapsed time for a background job,
all primary foreground tasks must be centrally connected (see
"Connecting Real-Time Tasks fo Interrupts” in Chapter 4).
Otherwise, the foreground task's execution time will be in-
cluded in the elapsed time of the background job.

At the beginning of o bockground job, the date ond stort
time (in hours and minutes)will be logged on the LL device.
At the end of a background job, the total CPU time of the
fob (in hours, minutes, and seconds) will alsq be logged on
LL. This information plus the occount number and user name
is then written on the "AL" file in the Background Dato area

4 CP-R Functions

of the disk. The "AL" file must be defined vio the RADEDIT;
it must be in the D1 orea of the disk, and allocated @ mini-
mum size of 256 words. This file can be purged petiodically
by the operator. '

The Account Inventory (Al) file located in the SP area is o
blocked file containing 80-byte records which repreient the
authorized accounts and user names in a given system, The
account and user name records in the file must be arranged
alphabetically with occount records preceding user name
records., An account record contains the account name (1
to 8 EBCDIC characters) beginning in eolumn 1. The user
nome record contains the account name beginning in column 1
followed by a comma followed by the name field (110 12
EBCDIC characters), One or more user name records may
follow an account record. Both account and user name
records must have EDIT line numbers in columns 73-80.

For exomple:

Column

12 346 5678 9011203 NMISWII AIVK
P T 1 .000
A9S2 32105 2.000
A2 ONSOGE L L L s s 3.000
K173021 ., 4.000
K173021,A87%2........ 4 .100
K173021,X9.......... 5.000
K1?723021L,727272........ 10.000

The Al file is used to validate the TJE user's log-on infor-
mation. It is also used to validate the account and user
name supplied on a background JOB card.

PUBLIC LIBRARY

If a CP-R system has several programs that share a group of
subroutines, this set of subroutines can be collected in main
memory in a "Public Library”. This preselected set is looded
by the Overlay Loader into a previously defined file on the
disk. The Loader also writes the names and entry points of
all the routines into the same disk file, Then, whenever the
Overlay Loader loads o foreground or background progrom
that references one of the "public” routines, it links the ap-
propriate bronch to the Public Library copy instead of load-

ing a separate copy. This can representa considerable saving
in space for a large system. An installation may define as
many Public Librories os needed, -

If the appropriate Public Library is not presently resident
it will be outomatically loaded into its specified location
whenever a program is loaded that uses it. If the Public
Library is for secondary (mapped) tasks, it may include a
common=-virtual context segment that is loaded into dif-

ferent real space for each task using it, i.e., a nonshared

context segment,

——

Symbiont routines transfer data from the card reader o disk
storoge and from disk storage fo the line printer. Input co-
operatives intercept card reod commands in user progroms
ond transfer date from disk storage where it has beun stored
by symbiont routines. Output cooperative routines intercept
output directed from user programs fo a line printer and
transfer the dota to disk storage. Symbiont service is avail-
able only to background jobs.

CONTROL TASK
The CP~R Control Task performs the following functions:

1. "1/Ocleanup” and "1/0 start” when any of these func-
tions are deferred from the 1/0 interrupt task because
of priority considerations.

2, looding, initialization and release of primary fore-
ground tasks.

3. Sequencing of background programs.

4, Console interrupt ond operator key-in processing.
5. Dumps for the background and operator.

6. Error Log filing.

7. Scheduling for periodic initialization of primary and
secondary foreground tasks.

The CP-R Control Tesk is connected to the lowest priority
dispatcher in the system at system generation time,

OVERLAYS

Alarge portion of the control program is overlayed to mini-
mize main memory residence requirements, The overlays
may beselectively SYSGENed s resident in order fo enhance
system performance on an installation=specific basis.

MEMORY PROTECTION

CP-R provides memory protection for all input operations
except direct input, and provides write protection for disk
files. The hardware write-lock and access-contro! features
fumish memory protection for all non-1/0 operations.

CP-R provides two levels of memory protection against
faulty secondary (mapped) tasks, and one level of memory
protection against faulty primary (unmapped) tasks:

® Memory accesses by secondary tasks are controlled
both by means of the hardware write-lock feature and
the access-protectionifeature associated with the mem-

ory map.

® Memory accesses by primory tasks are controlled by
the write-lock feature.

For the purposes of write-lock protection, real memory is

divided —at SYSGEN —into a variable number of parti-

tions; each partition falls into one of four classes of mem-

ory, as follows:

® System memory: used exclusively by CP-R and given
a write lock of 11, (One partition only.)

e Foreground private memory: used exclusively by pri-
mary tasks and given a write lock of 10.

e Foreground preferred memory: used by both primary
tasks ond secondary tasks, and given a write lock
of 00 (i.e., unlocked).

e Secondary task memory: used by secondary tasks only,

both foreground and background, and given a write
lock of 01,

The several kinds of tasks that are possible under CP-R are
given o write key based on the classes of memory that they
are allowed to access (with respect to write=lock protec-
tion only):

e Control-program services execute with a "skeleton”
write key of 00, and thus can modify memory of any
class,

o Primary tasks execute with a write key of 10, and can
modify private and foreground-preferred memory only.

® Secondary tasks, both foreground and background, exe-
cutewith a write key of 01 and can modify foreground-
preferred and secondary=-task memory only.

For secondary tasks, which always execute in mapped mode,
the hardware memory map affords an additional level of
protection. The map effectively prohibits such o task from
referencing any oddress outside its assigned virtual ronge
and therefore completely protects all real memory not allo-~
cated to it. Further, through the assignment of access-
control codes (read only, read/execute, read/write/execute
to each of the virtual pages assigned to a task, the system
outomatically prevents undebugged programs from accident-
ally executing invalidtypes of access, e.g., from executing
in a data-only section, or from writing into a procedure-
only section. Memory-access control codes are assigned
jointly by the user and the system.

Background tasks causing wokction violations are aborted.
Foreground programs are aborted unless they have requested
trap control (see TRAPS system call).

Memory protection on all input operations performed via

service functions (except IOEX) is guaranteed by the soft-
ware. The system checks the validityof the input area on all

read operations fo ensure that the area # wholly contained
in the calling program's write~lock area. If on attempt is

mode to read into on invalid area of main memory, on error
condition is retured fo the error address specified by the

user, If no address is specified, the job is dborted. An "FG"

key-in is required before a foreground program con be loaded
from the background job stack; this protects the foreground

from an error in a@ background job stack.

CP=R Functions 5

DISK WRITE PROTECTION

CP-R fumnishes software write-protection of disk files in
addition to that fumished by the hardware write—protect
switches, Normally, bockground progroms are allowed to
write only in the Background Data area or Background Temp
areas of the disk, Foreground programs are allowed to write
into the Foreground ond Background Data areas. The fore~
ground user is responsible for ensuring that 10E X (direct 1/O)
writesonly in the IOE X~-Access area of the disk. The System
Progrom area, Foreground program area, and Bockground
Progrom area can be written info only if the "SY" key=in is
in effect for the job in which the writing task is defined.

Similarly, the Overlay loader and RADEDIT (bockground
processors) are cllowed to write in nonbackground areas
only if the "SY" key=inis in effect for the background job.
Any disk write-protection violation will result in a write-
protection error indication retum, and the write order will
not be carried out.

All disk files can be read by a user without restriction.
There is no system-fumished read protection for disk files.

LANGUAGE PROCESSORS

The following language tronslators are available for inclu~
sion in thé operating system:

Extended FORTRAN 1V
sL-1 '

Assembly Program (AP)

Extended FORTRAN 1V is a three-pass compiler that is a
superset of ANS FORTRAN, incorporating many features
not found in other FORTRANS,

SL-1is a simulation language to solve differential equations
as the fundomental procedure in simulating parallel, con~
tinuous systems, An extensive set of macros permit the user
to simulate wide variety of linear and nonlinear elements
through the use of single-operator statements. These
prototype statements are inserted info the user program
each time a macro is referenced by name,

Assembly Program (AP) is o three-pass assembly processor
with a fourth pass that generates and prints o cross refer-
ence listing, The first pass accepts input written in sym-
bolic format, compressed format, or compressed format with
symbolic corrections or updates. Pass 1 then produces an
encoded program used by the other passes for further pro-
cessing, depending on the options specified on the |AP
control command. The first pass is required for all AP
runs; the other three passes are optional. The final os-
sembly pass (Pass 3) outputs the program in standard object
loanguage.

é Longuage Processors/Service Processors

SERVICE PROCESSORS

Service processors provide routines for performing frequently
used functions. The service programs include the Overlay
Loader, RADEDIT, ond Edit.

OVERLAY LOADER

The Overlay Loader (a background processor) is used to
ereate overlay-program load modules for later execution in
either the foreground or background. Thus, if a foreground
program can tolerate a slight delay in reading overlay seg-
ments into memory for execution, either foreground or back-
ground programs of virtually unlimited size can be constructed
even though memory size is restricted. For exomple, «
1400-word overlay can be input in about 50 milliseconds,
using a Mode! 7204 Disk; that is, the time required to bring
in anoverlay for execution is the time of the one disk access
required to read the overlay. Since a load module is stored
on disk in "memory imoge form", it con be loaded very
quickly as one logical record per segment. A load module
formed by the Overlay Loader can be entered permanently
into the System Progrom area, Foreground Program area,
or Background Program Areq, or it can be loaded on o tem~
porary file in the Background Temp area of the disk.

An overlay structure, e illustrated in Figure 1, consists of
a permanently-resident root segment ond any number of over-
lay segments, A blank COMMON and labeled COMMON
data area con be established for use by the root ond overlay
segments, Each segment is created by the Looder from one
or more object modules output by a language processor, The
Loader will build the Program Control Block, the OVLOAD
table (used to load the overlay segments at execution time),
allocate or build DCBs, and allocate the temp stacks. It
will also load library modules to satisfy unsatisfied references
encountered in the loading process. A maximum of two
libraries con be searched. Library search and loading are
extremely fast, due fo special tables that ore added to the
library files ot the time the librory is created on disk.

The overlay segments must be explicitly defined at link-
edit time ond explicitly called ot execution time. All
segments in a path may communicate with each other via

REF/DEF linkages, but it is the user's responsibility fo en-
sure that any segment referenced is currently in memory,

RADEDIT

RADEDIT controls disk allocation for areas containing per~
manent disk files and performs utility functions [ﬂ' all areas,

RADEDIT performs the following functions:
1. Addsor deletes entries in the permanent file directories,

2, Compacts disk arecs by relocating files and updating/
compacting directories to regain space within an area.

3. Moaps permanent disk file ollocations.

Root
(level 0)

I

i

]

Overlay Overlay
Segment Segment
(level 1) (level 1)
I__J_—L [1
Overlay Overlay Overlay Overlay
Segment Segment Segment Segment
(level 2) (level 2) (leve! 2) (leve! 2)

==

Overlay Overlay
Segment Segment
(level 3) (level 3)
Figure 1. Overlay Structure
4. Builds and maintains library files on the disk for use by BACKGROUND JOB ORGANIZATION

the Overlay Loader,
Copies permanent disk files.

.

Saves the contentsof disk areas in self-reloodable form.

Restores disk areas previously saved.

® N o>

Dumps the contents of permanent disk files or areas.

When used from a TJE job, not all of these functions are
available. (See Chapter 14.)

EDIT

The Edit processor is a line-at-a-time text editor designed
for on-line or batch creation, modification, and handling
of progroms ond other bodies of information, All Edit data
is stored on disk storage in a keyed file structure of
sequence-numbered variable length records which is built
ond maintained only by the Edit processor,

Between editing sessions, the data may be saved on stan-
dord CP-R files of blocked, unblocked, or compressed
organization and con be occessed by any other program or
processor.

Edit functions are controlled through single-line commends
supplied by the user. The command longuage provides for
insertion, deletion, reordering, and replacement of lines
or groups of lines of text. It also provides for selective
printing, renumbering records, ond context editing oper-
ations of matching, moviig, and substituting line-by=line
within a specified range of text lines (see Chapter 13).

The user controls the execution ofa background job by means
of control commands. These control commands are inter-
preted by either the Job Control Processor (JCP), Overlay
Loader, or RADEDIT; they specify '

e Processors required and the options to be used.

o Input/output devices required and their specific
assignments,

e Looding ond execution requirements.
e Libraries and supporting services required.
e Progrom modification and debugging requirements,

A batch job is o sequence of control commands that may
be executed independently, Each such background job
is independent of any other job and consists of one or
more directly or indirectly related job steps. A job
step results in the execution of o processing program
such as a language translator, service program, or user's
program,

-
FOREGROUND JOB ORGANIZATION

The user may define a set of one or more related foreground
tasks as a job. Such o job may specify that certain per-
ipheral devices or files are private for its use, or the job
may gain exclusive control of o device on a temporary basis.
All tasks within o foreground job may access the device de-
fined as private.

Background Job Orgonization/Foreground Job Organization 7

INPUT /OUTPUT SPECIFICATIONS Table 2. Channe!or Cluster/Unit Designation Codes (cont.!)

Throughout the CP=R system, specifications of input data Significance
sources and output data destinations are made by giving a Specified
physical device name (see Tables 1-3), o disk file identifier CTC' ': Xerox 550
(see Table 4), or an operational label (see Table 5). ()aroc er Sigma 9
n Unit Address Cluster Unit
Toble 1. 1/0 Device Type Codes Address Address
yy Device Type N - 3 0
TY Typewriter. o - 3 1
LpP Line printer, P - 3 2
CR Card reader. Q - 3 3
cp Card punch, R - 3 4
9T 9-trock magnetic tape. S - 3 5
V4l 7-track magnetic tape. I - 4 0
DC Fixed-head disk. u - 4 1
DP Disk pack unit, v - 4 2
PL Plotter. w - 4 3
NO Not a standard device, Used as a X - 4 4
special purpose device for IOEX, Y - 4 5
LD Logical device. z - 5 0
f -
LN Remote Terminal. 0 - 5 1
t . . . 1 - 5 2
In this case the device name will be LNxxx where
xxx represents the decima! line number, 2 - 5 3
3 - 5 4
Table 2, Channel or Cluster/Unit Designation Codes 4 - 5 5
Significance 5 - 6 0
ops é - 6 1
Zﬁi:::::r Xerox 550 7 6
®) Sigmo ¢ - 2
n Unit Address Cluster Unit 8 - 6 3
Address Address 9 - 6 4
A 0 0 0 blank - 6 5
B 1] 0 $ - 0 1
C 2 1 1 f - 0 2
D 3 1 2 @ - 0 3
E 4 1 3 - 0 4
F
3 ! 4 Table 3. Device Designation Codes
G 6 1 5 -
H 7 2 0 Hexodecimal Device -
) . Code (dd) Designation
i -
J - 2 2 - 00<dd<7F Refers to o device number
K) 2 (single devices) (00 through 7F).
B B80<dd<FF Refers to a device controller num-
L - 2 4 (multiple devices) | ber (8 through F) followed by o
M - 2 5 device number (0 through F).

8 Input/Output Specifications

Toble 4. Disk Arec Codes

PHYSICAL DEVICE NAMES

Physical device names are of the form v

Code Area
SP System Program area. : y [ndd] '
’ 4

FP Foreground Progrom area. [0 xxx]

BP Background Program area. where

BT Background Temp area.

Yy identifies the type of device (see Table 1).
XA TOEX Access areo.
CK Checkpoint area. n identifies the chonne! or cluster/unit number (see
Table 2).

D1

|:)A Data areo (number of dota areas is dd identifies the device number (see Table 3).

. defined ot SYSGEN).

DF t . o g

See Command Syntax Notation for significance of brackets.
Table 5. System Operational Lobels
Standord or

Labe! Optional Reference Comments

BI Standard Binory input Used to input binary information.

BO Standaord Binary output Used by processors to output binary
information.

C Stondard Control command Used by the system and processors to

input read control commands.

Cl Stondord Compressed input Used by AP.

(o) Stondard Compressed output Used by AP,

DI Optional Debug input Used by the Debug facility.

DL Optional Debug listing Used by the Debug facility.

DO Standard Diagnostic output Used by the system for postmortem
dump and diagnostic messages and by
AP for diagnostic messages.

DP Optional Debug patch Used by the Debug faciliy.

ER Optional Error logging Used by Error Logger.

LL Standord Listing log Used by the system ond AP to log
control commands and other system
messages.

Input/Output Specifications

-

Toble 5. System Operational Labels (cont.)

Stondard or

Label Optional Reference Comments

LO Standard Listing output Used for object listings from assemblies
ond compilations,

MO Optionol Medio output Used by Medio facility.

oC Standard Operator's console Used by the system for key~ins ond op-
erator control. (Alwoys assigned to a
keyboard/printer.)

Pl Optional Debug utility 1 Used by the Debug focility.

P2 Optional Debug utility 2 Used by the Debug focility.

SE . Optional Save environment Used by Alorm Sover.

SI Standard Symbolic input Used by processors to input source
(symbolic information).

SO Stondard Symbolic output Used by SL-1 ond AP.

xxx identifies the line number of o communication This form of file identifier may occur only in o poren-

line, thesized group, for example, as in the background
commond:
and
LOAD (OUT, SP, RADEDIT)
0 identifies the null device.

The null device does not exist os such, but may be used
whenever a device of the form yyndd is valid. Input and
output requests to the null device couse 6 normal type com-
pletion and zero octual record size to be posted. No dato
is moved to or from the 1 ‘O buffer,

Note that a physical device nome may be the name of o
logical device (LDndd).

DISK FILE IDENTIFIERS
Disk file identifiers have two basic forms:

1. areq,name

where
areo is the name of ony disk orec defined on
the system,
name is the name of the file,

10 Input/Output Sﬁecificuﬁons

or the keyin:
BATCH (D1, JOBFILE)

Files in accounts other than the system account moy not
be identified in this form,

2, [nome][[arec]][.[accoun 1]

where

name is the nome of the file. If omitted, the
area must be specified, and the whole area is
the identified medium,

area is the nome of the disk area imdwhich the

file resides, ond may be ony orea defined on

the system. If omitted, the file is assumed to

reside in o public orea and the orea will be

determined by the system,

account is the nome of the cccount in which
the file is defined. Account names must have
at least one character, and at most, eight.

" The account name may be omitted, in which -

cme, o default is provided. If the area nome
is also omitted, the account nome defaults to
that in which the task which opens the file is
running. If the area nome is specified, the

account name defoults fo the system account.

Files of the same nome may be defined as long as they
differ in either account name or area nome, however,
if files of the same name and occount are defined in
different public oreas, one of them will be inaccessible
except by explicit specification of its area name, since
by default, the one found first is accessed,

The Background Temp area (BT), is a special area in that its
file names are restricted to the set, GO, OV, ond X1

through X9 and account name is not required. Its primary
purpose is for work files for the bockground processors. Its
files are temporary ond will be discarded ot the beginning
of the next job.

Files in other arecs are permanent files and will be kept
by the system untii they are explicitly deleted.

OPERATIONAL LABELS

Operationol labels (oplabels) are names used to symbolic~
ally reference physicaol devices and disk files. All oplabels
ore defined ot SYSGEN (see Chapter 15) and are given
their permanent default, or system initialization assign-
ments, System oplabels, as listed in Table 5, are treated
specially:

First, they are created automatically during SYSGEN. The
Standard System Operationa! Labels are alwoys created in
all SYSGENS. The optional system operational labels are
used by optional features in the CP=-R operating system and
are created only if their associated feature is included in
the system. Any user desired oplabel must be defined in
SYSGEN. Defoult oplabel assignments are also made in
SYSGEN.

Second, they are used by the CP-R system and its processors
as the standard assignments for standord DCBs. For ex-
ample, processors producing binary output do so to the
M:BO DCB, and unless explicitly changed, the DCB is
assigned to the BO oplabel. Where the output actuolly
goes is a function of the assignment of the BO oplabel.

_~Oplabels are considered job level resources. That is, each

fob within the system has its own separate set of oplabel
asignments, The oplabel asignments for the CP-R job are
used as the default assignments for other jobs. When a new
job is activated, this set of default assignments becomes the
initial assignments in the new job. Any reassignments in
that new job affect only that job. The assignments are
retained until changed or the job terminates.

The defoult assignments in the CP-R job may be changed
(see STDLB key-in). The resultant set of assignments be-
comes the default set for any subsequently activated jobs.

RESOLVING 1/0 MEDIUM NAME AMBIGUITIES

When a command permits more than one 1/0 medium type to
be named in the same field, certain ambiguities may arise
as to which type of name is intended; for instance, '9TAS0'

could be either a file nome or o device name. The follow-

ing rules resolve this type of ambiguity:

1. Nomes precededor followed by periods are parts of file
identifiers. This means '.SI'is not an operational labe!,
and '9TABD.' is not a device.

2. Names followed but not preceded by periods are file
names, for example, '9TABO.' is o file name, not a
device, 'Sl.’' is also c file nome, not a disk area name
or an operational label.

3. A nameis a disk area name if it follows a period, it does
not followanother orea name in the same file identifier,
it has two characters, and it is defined as an arec name
in the system,

4, A name is a disk file account name if it follows a period
ond is not selected by rule 3.

5. A nome is on operational label if and only if it has two
characters, it is defined as an operational label in the
system, and it is not excluded by rule 1.

6. A nome is a device name if and only if it hos five char-
acters, it is defined as a device in the system, ond it is
not excluded by rule 1,

7. Nomes which are not typed by rules 1-6 are tested first

as orea nomes in file ID format 1, then as file names
(with unspecified area ond account) in file ID format 2.

Input/Output Specifications 11

%

2. CONTROL COMMANDS

Background processing is controlled and directed by means
of control commands. These commands effect the construc-
tion and execution of programs and provide communication
between o program and its environment. The environment
includes CP-R and the assembly language processors, com-
piler language processors, service processors, the operator,
and the peripheral equipment.

Contro! commands have the general form

Imnemonic specification

where

| is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
function or the name of a processor. The name,
consisting of up to 8 characters, may begin any
number of spaces after the | character, except for
an EOD command.

specification is a listing of required or optional
specifications, This may include keywords, con-
sisting of up to 8 characters, labels, ond numeric
values appropriate to the specific command,

For illustrative purposes within this manual only, the op-
tions of the specification field may be shown enclosed by
brackets, braces, and/or parentheses. In octuality, only
parentheses moy be used. Parentheses are mondatory only
when on option has two or more subfields (see Command
Syntax Notation).

One or more blanks must separate the mnemonic andspecifi-
cation fields, but noblanks can be embedded within afield.
A control command is terminated by the first blonk ofter the
specification field, or, if the specification field is absent
ond a comment follows the command, the command is termi-
nated by a period after theblankthat follows the mnemonic
field. Annotational comments detailing the specific pur-
pose of a command may be written following the command
terminator, but no control command record can contain more

than B0 characters.

A control command can be continued from one record to the
next by using a semicolon to replace the comma as a sub-
field terminator in the specification field of the command.
Column one of the continuation card must contain either an
exclamation mark (if the control command is to be reod by
the Job Control Processor), or a colon (if the command is to
be read by the Overlay Loader or RADEDIT), See the con-
trol command examples given later in this chapter for an
illustration of the proper use of the semicolon.

12 Control Commands

Control commands ore ussally input to the monitor vio
punched cords; however, any input device(s) may be de-
signated for this function, All control commands ore listed
on the output device designated as the listing log (normally
a line printer). In this manner, the monitor keeps o record
of the progress of the background. When a job is aborted,
all eontrol commonds skipped over until the next JOB com-
mand is encountered are listed on LL with a "greater than"
character (>) in column one.

Note that in all control commands, excluding processor
control commands, the first three characters after the

| choracter ore sufficient fo define any mnemonic code
or keyword.

.

Control commands may be categorized as follows:

System Control Debug Contro!
JOB PMD

ASSIGN

LOAD Utility Control
ATTEND

MESSAGE PFIL

PAUSE PREC

ccC SFIL

LIMIT REWIND
STDLB UNLOAD
ROV WEOF

RUN DAL

ALLOBT

MODIFY (special) Processor Control
LIST

INIT Processor name
SJOB

BATCH

Input Control

EOD
FIN

J0B CONTROL PROCESSOR

All control commands ore read from the “C" (oplabel)
device by the Job Control Processor (JCP). The JCP is
o special processor loaded into the background by CP-R
upon the initial "C" key-in. The JCP is also reloaded
into the background following each job step within ajob.
A fob step is defined as all control commands required
for the set-up and execution of a single processor or user
progrom within a job stack.

The JCP processes each control command until a request is
mode to execute a processor or user program, at which time
the appropriate program is read into the background and

given control. A detailed description of the JCP interface
with the system processors or user programs & given later in
this chapter under "Processor Control Commands®.

SYSTEM CONTROL COMMANDS

J0B _ Each background job to be processed by the system
" must begin with a JOB control command. The JOB command
signals the completion of the previous job, if any, ond the
beginning of a new one. The JOB command couses the tem-
porary assignments of all operational labels (except the *C*"
operational label)tobe reset to their permanent assignments.

The form of the JOB command is

1JOB [occount number, name [, priority]]

where

occount number identifies the account or project.
It consists of from 1 to 8 alphanumeric characters.

nome identifies the user, It consists of from 1 to
12 characters.

priority specifies the priority of the job and deter-
mines the order in which jobs are run in @ symbiont
system, Legal values are:

0 hold in job queve until priority is changed
by a PRIORITY key-in.

1-7 lowest fo highest priority, The defoult

value is 1,

Note that commas separate the optional subfields. The
account number must precede the name, and both fields
must be present if either one is present. If the priority is
present, the number and name fields must be present. The
account and name information are verified against the infor~
mation in the Al file ond if not valid the job is aborted.

Example:

1JOB 12345,JOBSAMP1

The above example defines the account number for the job
as 12345, and the user as JOBSAMP1. The job will have
priority 1, by default.

ASSIGNM The ASSIGN control command allows the
changing of the defoult assignment of a Data Control Block

(DCB) in the next background progrom or processor to be
loaded. ASSIGN commands must appear prior to the RUN
or Processor name command to which it will apply. They
are effective for that job step only, ‘

The assignment con be to a physical derice, a disk file, or
anoperational label. Ifan erroris detected in the command,
the entire command is rejected and must be input again,

The form of the ASSIGN control command is

fid
JASSIGN (dcb, { device])[, (option), ...]
oplabel
where
dcb is the nome (not exceeding eight characters in

length) of the DCB fo be assigned. 1t must be the
first subfield following ASSIGN ond must be fol-
lowed by o specification (see below). The first two
characters of a wuser's DCB must be "F:" (e.g.,

F:PRINT or F:BI). The first two characters of a
system DCB name are "M:" (see Table 12).

fid is the CP-R file identifier fora file to which the
DCB is to be assigned. File identifier format is
defined in Chapter 1,

device specifies o physical device nome or a nu-
meric zero, “0", the null device,

oplabel specifies one of the operational labels
defined during SYS GEN (see Table 5).

The options below are used only if the user creates the DCB
or changes some of the DCB's parameters. Note that DCB
parameters not specified on the ASSIGN commond are not
chonged from their initial value. The initial values of the
DCB parameters depend upon how the DCB was created.

Parameters of system DCBs have stondard default values. DCBs

allocated by the Overloy Looder (F:DCBs) are set o all zeros.
User created DCBs have the initial valuesspecified by the user,

Mode (may be any or all of the following):

BCD specifies the EBCDIC or automatic
device mode.

BIN specifies the binary device mode.

VFC] specifies vertical fo‘nmf control.

NOVFC specifies no vertical format control,

PACK specifies that the packed binary or
unpacked binary mode is to be

UNPACK used for 7-trock magnetic tape.

PACK and UNPACK are not
valid unless BIN is specified.

System Control Commands 13

D1600 specifies density for tape drives with
progrom=controllable density

D800 (1600 bpi or 800 bpi).

ASCll specifies tfape dota code for tape drives
with program=controllable data

EBCDIC encoding.

DRC specifies whether tronsfers with a

} keyboard-printer are to be in
NODRC direct record contro! mode (no

editing) or not,

Number of recovery tries

TRIES, value specifies the maximum number of re-
covery tries to be attempted for an 1/0 operation.
The value must be less than 256,

Default record length

RECL,value specifies the default record length in
bytes. The value n must be 1<n<32,767, This
record length is used for all requests referencing
the DCBs that do not explicitly specify a record
length in the FPT.

Byte displacement of first byte in buffer

BTD,n specifies the byte displacementof the first
byte of the buffer. The value n is subject to the
limits 0 £ n <3, This value is the byte at which
the buffer begins within the word specified os the
buffer word oddress. Thisbyte displacement is used
for all requests referencing the DCB which do not
have BTD parameters in their FPTS,

Examples:

1. Assign listable output to a magnetic tape:

IASSIGN (M:LO,9TAB1),VFC

This example assigns the M:LO DCB to a 9-track mag-
netic tape. Vertical format control is also specified,
so the first byte in each record is o format control byte
for the line printer.

2. Assign binary output to the GO file:

IASSIGN (M:BO, BT, GO)

This example assigns the M:BO DCB to the GO file.

14 System Control Commands

3.

Assign source input to a disk file in the D1 data area:

JASSIGN (M:S],PRESTORE.D1)

This example assigns the M:SI DCB to the disk file
PRESTORE, which is in the D1area. This type of os-
signment could be used to assemble o source progrom
that had been prestored onto a disk file.

Build o user DCB that was left empty ot lood time:

IASSIGN (F:XX,7TAE0),PACK, (TRIES,3), —

[—-(RE CL,80),8IN

This example builds a user DCB, F:XX, and also assigns
F:XX to a 7-track mognetic tape. The packed binary
mode (PACK) will be used in accessing the tape, and
a maximum of three recovery tries (TRIES, 3) will be
attempted for a possible tape parity error. The de-
foult record size to be reod or written is BO bytes
(RECL, 80).

Assign a user DCB to read nonstandard binary cards:

IASSIGN (F:INP,CRAD3),BIN

This example assigns the user DCB, F:INP, to the cord
reader, and specifies that the binary mode is to be used
in reading the cords. This type of assignment would be
used to change an existing DCB to read nonstandord
binary cards.

Assign a user DCB to a public file in the user's own
account:

IASSIGN (F:FILE, FILENAME)

This exomple assigns the DCB nomed *F:FILE' to a file
named 'FILENAME' in the user's account, in whichever
public disk area it is found. :

Assign a system DCB to a file in a spec?.ﬁed account
ond area:

(IASSIGN (M:BI, ROM. D4, MYACCNT)

This example assigns the M:B] DCB to o file named
'ROM’ in account '"MYACCNT' in area D4,

LOAD The LOAD control command directs the JCP
Loader to load a background program on the disk and ab-
| solutize it for its main memory execution location.

The form of the LOAD command is

ILOAD [{option),(option)]

where the options are

' IN,fid/nome specifies the input device os a system
physical device name, a system operational label,

or a disk file from which the object modules will

be looded. The default input device is the one
assigned to the Bl operational label.

] QUT, fid/name specifies the output device as on
operational label or a disk file on which the

looded program is written. The default output de-

vice is the OV file,

EXLOC,value specifies the execution location (in
hexadecimal) of the program being loaded. The
default location will be the start of background.

SEG,value
segments that follow the root, The default value
is zero, which means only a root is being loaded.

MAP specifies that a map of the looded program be

oUtput to the LO device, The default is no map.

The primary function of the JCP Loader is to load the Over-

| lay Looder at SYSGEN time. However, the JCP Looder
will lood any nonoverlaid background program or one with
a simple tree structure under certain restrictions (see

Appendix E).

Exomple:
Lood Overlay Loader from cards:

specifies the decimal number of overlay

ILOAD (lN,CRAO3),(OUT,SP,OLOAD),—]

l—(SE G,6),MAP

This command would be used to lood the Overlay Loader

onto its permanent file (OLOAD) in the SP area of the
disk. Six overlay segments (SEG, é) are specified and
a MAP of the lood is requested. The complete deck
structure required to perform the load is illustrated in
Figure 2.

ATTEND The ATTEND control command is used during

o progrommer—attended run and indicates that CP-R is to go
into a WAIT condition after a WAIT system call or after an
abort from the background. After an unsolicited key-in

of "C", background processing will continue from the point
of the wait. 1f the ATTEND control command is not speci-
fied and an abort or error condition occurs, or if 0 WAIT
system call is mode, the system does not pause for operator
intervention but skips all contro! commands, binary records,
ond data until ¢ JOB or FIN command is encountered, When
in skipping mode, all control commands encountered will be
listed on the LL device, with o greater than character (>)re-
placing the exclamation mark in column 1. Thedefault mode
of operation (no ATTEND command present) is used for closed-
shop batch processing and there are no halts between jobs
after an abort.

The form of the ATTEND command is

IATTEND

The effect of an ATTEND command exists for one job only.
Normally, the ATTEND command immediately follows the
JOB command.

MESSAGE The MESSAGE control command is used to
type a message to the operator. The message will be typed
on the OC device and normal processing will continue ofter
the message is output.

The form of the MESSAGE command is

IMESSAGE messoge

where message is ony comment to the operator, up to a full
card image (80 columns). The message may contain any de~
sired characters, including blanks, but may not be con-
tinued from one record tothe next. Two ormore MESSAGE
control commands may be used in immediate succession.

Note that the entire card imoge, including IMESSAGE,
will be output to LL ond OC.

Example:

IMESSAGE SEND ALL SAVE TAPES TO JOHN SMITH

-_
The above example would cause the follewing message to
be output on the LL and OC devices:

1 IMESSAGE SEND ALL SAVE TAPES TO JOHNSMITH

Note: All CP-R messoges to the operator begin with two
exclamation characters.

System Control Commands 15

[IFIN

IEOD

. followed by an IECD

[Binary Deck of Overlay 6

Binary Decks of Overlays 3-5; each deck

IECD

Binary Deck of Overlay 2

Binary Deck of Overlay 1

| oD

J .Bm.u'ry Deck ofv ().vel;l;y Looder Root

l 1(OUT,5P,OLOAD),(SEG, 6),MAP

| ILOAD(IN,CRAO3);

| IPAUSE KEY-IN 'SYC'

1JOB

\

Figure 2. Lloading Overlay Loader from Cards

LIST The LIST command is identical to the MESSAGE
command above, except that the message is listed on LL
only, and not on LL and OC,

The form of the LIST commond is

ILIST message

where message may be any comment up fo a full cord image
of 80 columns,

16 System Control Commands

PAUSE The PAUSE control commend is similar to the
MESSAGE command except that the JCP will enter a sus-
pended state after the message is output to OC to give the
operator time fto carry out the instructions in the message.
Processing is continued after an unsolicited key=in of "C".

The form of the PAUSE command is -

1IPAUSE messoge

where message is any comment to the operator, up to a full
card image (80 columns). PAUSE does not require ATTEND
mode.

Example:

{PAUSE KEYIN SYC

The obove example would couse the monitor to pause ex-
ecution with the following messoge output on LL and OC,

11PAUSE KEYIN SYC

giving the operator time to key in SYC, which would per-
mit the user fo override the write protection on the disk
ond continue the background job.

cc The CC control command removes typewriter over-
ride of the C device (see TY key~in description). The next
control command will be read from the C device instead
of the typewriter.

The form of the CC control command is

ICC

The CC control commond has the same effect as the CC
key-in, and con be used whenever the JCP has control.

LT The LIMIT control command is used to set a maxi=
mum allowable execution time and maximum allowable
number of line printer pages for a background program. If
the job exceeds either limit, the background is aborted with
a postmortem dump (if the dump option was specified via o
PMD control commond).

The form of the LIMIT control command is

ILIMIT n [, m]

where n specifies the maximum allowoble execution time
in minutes and m specifies the maximum aliowable numberof
line printer pages.

STDLB The STDLB command is used o change the as-
signment of an operational label (with the exception of the
OC = Operator's Console) for the current background job.
The operational labels being changed receive the new
ossignments, which stay in effect until the next JOB com-
mand is encountered.

The form of the STDLB command is -

fid fid |
ISTDLB (ld:el,[device])[,(Iabel,[device Yero
oplabel oplabel

where

label specifies theoperational label o be msigned.
It must have been defined during SYSGEN (see
Table 5).

fid specifies the identity of a file, in the format
defined in Chopter 1.

A disk file Xn in the BT area must have been de-
fined by the JCP prior fo its use in this command,
(See the ALLOBT command.)

device specifies a physical device name or a
numeric zero, "0", the null device,

oplabel specifies another operational label is to
be used. "Label" will receive the same assign-
ment os "oplabel" has currently.

Notes: 1. The C oplabel cannot be assigned to the null
device.

2. If an error is detected, all assignments pre-
ceding the one in error will have been made.

Example:

Change temporary assignments of operational labels:

K STDLB (BO,BT,GO),(CO,COMPRESS. D2),(LO, 9TA80)

This example could be used for an assembly to change the
binary output to the GO file, the compressed output to the
COMPRESS file in the D2 area of the disk, and the listable
output to a $-track magnetic tape.

ROV The ROV command (RUN OV) couses execution
of the program (either foreground or background) on the
OV file.

The form of the ROV command is

IROV
-

Only primary programs may be looded into Foreground with
this command. The loading of any program into the fore-
ground area via an ROV control command must be preceded
by on FG key=in (see Chapter 3). A foreground program
looded by IROV is given the nome OV ond runs under the
CP-R job. There may be only one such program resident ot
any time.

System Control Commands 17

If o priority other than the default value of X'7F' (& defined
under the RUN control command) is to be mssociated with
the foreground program, the IRUN BT, OV, priority com-
mand should be used. The default value X'7F' is the lowest

priority.

RUN The RUN control command causes the named fore-
ground or background program fo be executed.

The form of the RUN command is

| /7 RUN Fid[, priority][, DEBUG]

where

fid specifies the identity of the lood module fo be
executed. The looding of any program info the
foreground area via a RUN control command must
be preceded by an FG key-in and must be o pri-
mary program, It will run in the CP-R job.

priority is a hexadecimal number in the range 0
through X'7F', to be assigned to the foreground
RUN request if the memory space is currently
_being used by enother foreground program, The
lowest priority, X'7F', is the default value.

DEBUG specifies that the program is to run under
the control of the CP~R Debug facility,

INIT The INIT control command causes the named
foreground task to be read into memory and initiated. The
INIT command has the form

| 7 1INIT taskname [, (JOB, jobname)] [, PRI][, STOP) —

L [, (PRIO ,xxxx)] [. DEBUG][, T¢]

where

taskname is the file identifier for the Lood Module,
with the exception that the specified file nome may
be converted to an actual file name by lookup in
the Job Program Table. If no match is found in the
JPT, the specified file name is used,

JOB is o keyword and indicates that the task is to
be run under a job other than the CP-R job. If the
JOB option is not specified, the task will be run
under the CP=-R job.

jobname specifies the name of the job under which,
the task is to be run. It may not be "BKG".

18 System Control Commands

PRI identifies the tosk & a primary task. If the
PRI option is not specified, the task is Tun as o
secondary task.

STOP specifies that the task is to be left in sus~
pended state after load. The default is to exe-
cute directly after load. This option is invalid
for a primary task.

PRIO is o keyword indicating thot task priority is
specified. This option is valid for secondary tesks
only. The defoultisto run under the lowest~priority
dispatcher, at the lowest software priority.

XXX is the hexadecimal priority value for the task.
The first two characters specify the interrupt level,
minus X'4F', of the dispatcher for the task. The
last two characters specify the software priority
for the task.

DEBUG indicates that the task is to be initiated
under control of Debug.

TS indicates that the task is to be time=sliced.

Note: IINIT command may not be used to start a back-

ground program.

SJOoB The SJOB control command crectes o foreground
job. It sets up job controls and table entries but does not
initiate any task in the job. The SJOB command has the
form

(lSJOB jobname[, (DEBUG, TYndd)] [, (ACCT ,xxx)] I

where
jobname is the name of the job fo be storted.
DEBUG indicates that a Debug control~console de-

vice oddress is specified.

TYndd is the oddress that Debug will use for com-
munication with the user when any task in the
job is given control under Debug. *

ACCT indicates that en account number (xxx) is .
being supplied.

000¢ The account number the named JOB is o be
associated with.

-

BATCH The BATCH command allows a background job
to couse o file to be entered in the bockground stream as a
control deck for a later job. This command is available
only in systems generated for symbiont-supported baockground.

The form of the batch command is

IBATCH fid

where

fid is the identifier for the file to be entered into
the batch stream, File identifier format is defined
in Chapter 1. A batch file may contain only one
background job.

ALLOBT The ALLOBT control command is used to de-
fine the files in the BT orea of the disk, and overrides any
JCP default definitions. The files input on the ALLOBT
command will receive the specified sizes ond formats. The
files defined via an ALLOBT command will stay in effect
only for the current job step unless the SAVE option is
invoked. If the SAVE option is used, the ALLOBT com-
mand will stay in effect for the entire job (any input for
the GO or OV files will always stay in effect for the entire
job).

The form of the ALLOBT command is

IALLOBT (FILE ,nn)[, (option),(option). . .]

where

FILE,nn specifies the name of the background temp
file to be allocated. Legal names for nn are
X1,X2,...,X%X9,G0O or OV,

The options are

FORMAT, value specifies the format of the file;
U for unblocked, B for blocked, C for compressed.

The default is unblocked for all files except GO;
the default for GO is blocked.

FSIZE,value specifies the decimal length of the
file in logicol records. If ALL is input for a value,
the remainder of the BT area will be allocated
for this file. An ALL input is allowed only once
and is only allowed for Xi files (not GO or OV).
A check is made for overflow of the BT area at
the time the ALLOBT command is input. The de-
fault value is 1000 records. Note that the file
size in sectors is computed using the logical
record size and not the granule size.

RSIZE ,value specifies the decimal number of words
per logical record. This field is only meaningful
for blocked or unblocked files since the monitor
compresses records of compressed files into 256~
word hlocks. Blocked files hove o default record
size of 128 words, and unblocked files have o de-
fault record size equal to the granule size. Note
that if RSIZE > 128, unblocked organization will
always be given to the file.

GSIZE,value specifies the decimal number of words
per granule. This field is only used in directly
accessing a file. The default granule sizewill be
the size of a disk sector.

SAVE specifies that this file isto be saved through-
out the job and notreallocated between job steps.

Example:

Change the default assignments of the background temp
files:

The group of ALLOBT commands

5 [IALLOBT (FIL,OV), (FSIZ,
4 [IALLOB (FIL,X4), (FSLALL)
JMGSIZE, 180)
IALLO (FILE,X3), (FSIZE,20);

w

L__.l;(ssrzs 100), (RSIZE, 30)

2 [IALL (FILE,X2), (FORMAT,B);
|1(FSIZE, 1000), SAVE
IALLOBT (FILE,X1), (FORMAT,C);

-

could be used by a background program to achieve the
following results:

1. The X1 temp file would be o compressed file that could
ho!d approximately 1000 EBCDIC ewtds. This file
would be saved throughout the entire job.

2. The X2 temp file would be o blocked file that could
hold a maximum of 100 binary cards.

3. The X3 temp file would be an unblocked file contain-

ing 40 sectors (assuming o 7204 disk) with a granule
size of 180 words or two sectors.

System Control Commands 19

4. The X4 temp file would be an unblocked file with o
record and granule size of 90 words (msuming @ 7204
disk) ond would be allocated the remcinder of the
Background Temp orea.

5. The OV file would not be allocated,

After inputting this series of ALLOBT commands, the back-
ground temp area would have the following layout (assum-
ing a 7204 disk):

X2 X3 X4 X1 GO

—. iy

34 Sectors ' 4QSectors n Sectors i 120 Sectors TDefaulf Size

Note that X4 receives n sectors, where n is the remainder
of the area after all other files have been allocated, X1 is
aliocated at the opposite end of the BT area since it will be
saved throughout the entire job.

The formula used to calculate the numberof sectors for X2 is

RSIZE

256 % FSIZE x 3

where 256 is the number of words per blocking buffer and
3 is the number of sectors (assuming a 7204 disk) necessory
to contain a blocking buffer,

The formula used to calculate the numberof sectors for X1 is

FSIZE x
25

where it is assumed that 25 cards can be compressed info a
256~word blocking buffer, The number 3 is the number of
sectors necessary to contain a blocking buffer,

3

DUMP CONTROL COMMAND

PMD The postmortem dump (PMD) control command
causes the system to dump o specified area of memory if
a background job is aborted during execution. Such a
dump is termed "postmortem" becouse it is performed ofter
the bockground program has been aborted, terminated nor-
mally, or not executed at all for any reason. The dump is
always output on the DO device. In the case of an abort
the time to perform the dump is not included in the total
time on the LIMIT control card. Note that the PMD com-
mand must precede the RUN command.

The form of the PMD command is

IPMD[UIL, TI[, From,tef, T1)[, (From,to, T))]. . .

where

U specifies that on unconditional dump at the end
of the job is to be output even if there were no

errors. If U is absent, the dump occurs only if
the job is aborted.

20 Dump Control Commands/Input Control Commands

T specifies (when it precedes address ranges) that
the dump will be listed in both hexodecimal and
text for all address ranges that follow. 1If the
general T is absent, the [, (from,to,T)] option will
dump that oddress range in hexodecimal ard
text, and the [, (from, to)] option will dump tha-
address range in hexadecimal only.

from specifies the location (in hexadecimal) ot
which dumping is to begin. If no locations are
specified, the entire background is dumped.

to specifies the last location (in hexodecimal)to be
dumped. The lost location must 2 first location.

A maximum of four location pairs is processed and only the
lost PMD command is honored within a jobstep. If an error

occurs anywhere on the command, the entire command must
be reentered.

Example:
Request a postmortem dump:

KPMD U, (1200, 1300), (2000,3000, T)

This example requests an unconditional dump at the terming-
tion of the next progrom to run in the bockground. loca-
tions 120074 through 130014 will be dumpedin the standard
hexadecimal format, and 200014 through 3000)4 will be
dumped in both hexadecimal and text. The output will be
on the DO device.

INPUT CONTROL COMMANDS

E0D The user may define blocks in a data deck by in-
serting EOD contro! commands at the end of each block.
When an EOD command is encountered, the system retums
on EOD status. Any number of EOD commands may be used
in a job and for any reason.

The form of the EOD command is

IEOD

Note that EOD control commonds must not have®ony spaces
between the exclamation character and the mnemoflic.

FIN the FIN control commond is used to specify the end
of a stack of jobs. When the FIN command is encountered,
the system writes it on the listing log to inform the oper-
ator that all current jobs have been completed, types
“BEGIN IDLE" on OC, and then enters the idle state.

All time preceding the FIN commond is chorged to the
previous job, if job accounting is being performed. All
time from the FIN command to the next JOB command is
not chorged.

The form of the FIN command is

IFIN

UTILITY CONTROL COMMANDS

The utility control commands described below cllow the
user to manipulate magnetic tape files.

PFIL,PREC The file and record positioning commands are
used to position a device within its current file. The PFIL
command, will leave the device positioned before the file
mark when moving in the forward direction and at the first
record of the file when positioningbackwards. For the PREC
command, no adjustment is made when an EOT, BOT, or
EOF mark is encountered. Only background devices (not
dedicated to the foreground or IOEX) can be positioned.

The forms for the PFIL and PREC control commands are

IPFIL
I!PREC} name[,BACK][,n)
where
name specifies a system device name or operational

label of the device that is to be positioned. This
must be the first item in the specification field.

BACK specifies that the direction of the position-
ing is backward. The default is forward.

n specifies the number of records to skip. The n pa-
rameter applies only to the PREC command and
not to PFIL. The default is skip one record. The
PFIL command always refers to one file. (Any
BOT, EOT, EOF marks encountered will termi-
note the PREC command.)

Exomples:

1. Position the BO oplabel to the end of the data:

IPFIL BO

This example could be used to position the BO oplabel
file so odditional object modules could be added to
those alreody existing.

2, Position a magnetic tape:

ﬂ PREC BO,30

ISTDLB (BO,7TAEQ)

This example would position magnetic tape on 7TAEOD
30 records forward from its current position.

SFIL The skip file command is used to skip one or more
files on a magnetic tape unit. The SFIL command leaves
the device positioned beyond the specified EOF in the di-
rection of the tape movement. If a BOT condition occurs,
the device is positioned at the first record following the
BOT marker.

The form of the SFIL control command is

ISFIL name[,BACK](,n]

where
name specifies a system device name or operational
label of the device that is to be positioned. This
must be the first item in the specification field.

BACK specifies that the direction of the positioning
is backword. The default is forward,

n specifies the number of files to skip. The default
is one file,

Exomple:

Skip tape files:

ISFIL 9TAB2,BACK,4

This example would cause back skipping of four files on
the designated 9-track mognetic tape.

REWIND The REWIND command is used to rewind a mag-
netic tape. It has no effect on other devices.

The form of the REWIND commond is

IREWIND nome

where name specifies o system device name or operational
Iabel of the device that is to be rewound.

Utility Control Commands 21

Exomple:

Rewind a tape

IREWIND 7TAEO

This example would rewind the designated 7-track tape.

UNLOAD The rewind manua! (UNLOAD) commond
causes the specified mognetic tape to be rewound in mon-
val mode. Operator intervention will be required to use
the device ogain (i.e., depressing the START switch on a
tape drive).

The form of the UNLOAD command is

IUNLOAD name

where nome specifies ¢ system device nome or operational
label of the device that is to be rewound in manual mode.

Example:

Unlood o magnetic tape:

IUNLOAD 9TAB3

This example would cause the designated 9-track tape to be
rewound in manual mode.

WEOF The write end-of-file (WEOF) commond causes
on end-of-file markto be writien on the output device

if an EOF is oppropriate for the device. For mognetic
tape, a tape mark is written; for cards, anEOD is written.

The WEOF command is ignored for all other devices.

The form of the WEOF command is

IWEOF name[,n]

where

name specifies o system device nome or oper-
otional labe! of the device that is to receive
the EOF.

n specifies the number of end-of-files to write.
The default is one.

22 Processor Control Commands

Example:
Write end-of-file on mognetic tape:

IWEOF 9TA81,2

This example would write two EOFs on the designoted
9-track magnetic tape.

DAL The Dump Accounting Log command causes the
contents of the Accounting Log to be printed on the LO
device. The Accounting Log is kept on the AL file on
the D1 areo of the disk. An option exists to purge the
file ofter the dump is completed. Note thot anSY key-in
is required to purge the AL file.

The form of the DAL commond is

IDAL [PAL]

where PAL specifies thot the Accounting Log is to be purged
after the dump is completed.

PROCESSOR CONTROL COMMANDS

A processor control command indicates fo the system that
control is to be transferred to the specified processor. It may
also specify the types of input fo be accepted and the types
of output to be produced by the processor.

Processors con be created, updated, and deleted under nor-
mal batch operations, and there ore no restrictions as to how

many and what kind of processors moy be added to the system.

User programs in any area of the disk con be called by

IRUN fid

where fid is the file identifier for the lood module to be
executed,

All system processors and user processors in the SP area or
system processor alternate orea can be called for execution
by the control commend:

{nome parometers

where

nome is the disk file name of the processor to be
executed (e.g., FORTRAN, SL-1, or AP. Note
that the disk file name for the Assembly Program
should be AP, since the JCP does special alloca-
tion of the BT orea if |AP is encountered.

~—

o—

parameters are optional porameters interpreted by
each processor. Nomally, at least one input
option and one output option must be specified.

PROCESSOR INTERFACE WITH CP-R

The standard system processors available under CP-R are

Assembly Program (AP)

Overlay Loader

RADEDIT

Edit

Extended FORTRAN 1V

Dump Analysis Program (ANALYZE)
SL-1

Error Log Lister and Analysis (ELLA)

Device Exerciser

System processors and any user processors should follow these
common ground rules:

1.

All processors must reside on the SP area or system
processor altemate areo of the disk to be callable by
a Iname command.

Al| processors must operate in the background.

All system DCBs (M:dcb) should be identified as a
primory reference in the processor, since at lood time
the Overlay Loader will furnish the processor with a
copy of the system DCBs.

All processors with overlay segments need only make
the explicit call fo SEGLOAD to load the segments.
The DCB used to load segment M:SL will be fumished
by the Overlay loader.

CP=R will furnish the start oddress and end oddress
of unused background memory to any processor that
needs this information. The two oddresses will be in
the following locations, and should be defined via the
EQU directive in the processor:

Location Mnemonic Description

LWA +1"™ of the back-
ground program's looded
areq; that is, this cell
contains the FWAH the
processor con use for o
dynamic table area.

x153" K:BPEND

YAll these addresses are in bifs 15-31 with bits 0-14 con-
taining zeros.,

"L WA ond FWA are the last word address ond first word
oddress.

9.

10.

Location Mnemonic Description

K:BCKEND LWA of usable back-
ground memory for the
processor; that is, this
cell contains the LWA
the processor can use
for a dynamic table
area.

x4t

If a processor has parometers to process from the " Iname"
control command (where "name" is the processor's name)
the oddress of the buffer containing the control com-
mand is in cell X'144', That is,

Mnemonic

Location Description

X144 K:CCBUF Address of control card

buffer,

A processor must perform its own vertical format con-
trol of the printer if format control is required. That
is, the processor must set the VFC (vertical format
control) bit in the DCB via the Device Format Con-
trol call and ensure that the first byte output to the
peinter is a format control byte. If a processor (i.e.,
AP) outputs a title at the top of each page, the num-
ber of lines to print per page is contained in the
following system cell:

Location Mnemonic Description
X174 K:PAGE Number of lines per page
byte 0 fo print.

If a processor uses scratch files (background temp
files X1-X9) ond desires a different record size, gran-
vle size, or organization that is given by defoult by
the JCP, the processor must make the appropriate sys-
tem call on the Device Mode function. By calling the
Device Mode function, the processor con set the file
organization (blocked or compressed) and the appro-
priate record size and granule size. The background
temp file default assignments by the JCP are described
below.

In general the processor should terminate input from
S1 when an end-of-file status is sensed on SI. To ter-
minate, the processor should make o system call on
EXIT. EXIT will close all the procegsor's DCBs and
close all open disk files.

All processors using the GO file should open GO and
then do a file skip (PFIL function call) on GO so the
GO file is properly positioned to receive odditional
data. The Job Control Processor will purge the GO
file upon reading o JOB control command.

Processor Interfoce with CP-R 23

JCPwill allocate the Background Temp area for all Xi files,
where, 1 i 9. The GO and OV files will receive their
SYSGEN defined sizes unless overridden with on ALLOBT
command. The GO file will be defined as a blocked file
with a logical record size of 120 bytes; the OV file will
be unblocked with the record and gronule sizes equal to the
sector size, The Background Temp area that remains after
GO ond OV have been allocated will then be equally dis-
tributed among the Xi files, All Xi files will be given un-
blocked organization with the record and gronule sizes
equal fo the disk sector size. The user can override any of

these defoults via on ALLOBT commoand. I the user dcsvres
not to have the Xi files reallocoted between processors,
the SAVE option on the ALLOBT command can be used,

JCP MESSAGES

The messages itemized in Table 6 are output by the Job
Contro! Processor on the LL device.

Table 6. JCP Messages

Message

Meoning

1HACCT LOG 1/0 ERROR X'xx'

An 1/0 error that could not be automatically processed was ancountered
during JCP execution. CP-R will enter a WAIT state if the |ATTEND
control command was first read in; otherwise, an abort and a skip to
the next job will occur,

11BI CKSM ERR
11BI SEQ ERR

JCP Loader encountered a checksum or sequence error on a binary
card during the loading process.

118T OVERFLOW

Insufficient Background Temp space to execute the requested back=
ground program. The job is aborted,

1ICC ERROR, BT OVERFLOW

The file size input on an |ALLOBT command is greater than the
available Background Temp space.

11CC ERROR, FG KEY-IN REQUIRED

A request has been made to run a foreground program without pre-
viously inputting an FG key-in. The IRUN or IROV command must
be reentered after the FG key-in is input.

11CC ERROR, ILL,
RELOCATION OF BT

An improper |ALLOBT command was input to change a Background
Temp (BT) scratch file that was designated os o "saved" file prior to
this job step.

11CC ERROR IN ITEM xx

An error exists in a JCP control command in the indicated item, Every
item (except the | character) followed by a blank or comme is
counted in determining the item in error,

11D1 AREA FGD, CAN'T UPDATE AL FILE

JCP could not process accounting information because the D1 area on
disk has been reserved for foreground. CP-R will enter WAIT state if
an {ATTEND control command was specified; otherwise, an abort and
a skip to the next job will occur.

J1IEOT ON FILE xx00uxxoox

End-of-Tape status was returned from an attempt fo read or write the
indicated disk file,

IIERR, CONTROL BYTE = xx

JCP Looder is not equipped to process the indicated control byte.

HFILE soooouooc NONEXIST,

-

The indicated disk file wos never allocated via the RADEDIT or was
never written into.

11ILL. DEFINE FIELD ITEM

JCP Loader has encountered a define field item that it is not equipped
to hondle.

IHLLEGAL BINARY CARD

An EBCDIC cord was read by the JCP Loaoder where a binary card was
expected.

24 JCP Messages

Table 6. JCP Messages (cont.)

Message

Meoning

L1ILL. EXPRESSION

JCP Looder has encountered an expression that it is not equipped to
evaluate (a mixed resolution expression). The lood will be dborted.

HILL. NEG. ORG ITEM

JCP Loader has encountered an origin item that it is not equipped to
handle (on origin item that moves the load location counter in «
negative direction). The load will be aborted.

111/0 ERROR X"ox', LOC 'xxxxx’

JCP encountered an irrecoverable 1/0 error.

1 1LMI FULL, CAN'T LOAD x0omxxx

The indicated foreground program cannot be loaded because insuffi-
cient space exists in the Load Module Inventory table,

1INOT A TASK LOAD MODULE

ARUN command has nomed a file without a valid load module header.
The RUN command is aborted.

| INOT ENUF SPACE FOR LOAD

JCP Looder is unable to complete the lood because of insufficient
background space,

11PUB LIB, CAN'T LOAD xxxxsocxx

The designated program on the IRUN command isa Public Library and
cannot be executed via a IRUN command.

1ISCHED FILE OVERFLOW

File SCHED in the SP area is full thus discarding all future requests
for periodic scheduling. File should be copied and enlarged.

1ISCHED FILE TYC 'xx' ON 'operation'

The type completion 'xx' was received on the 'operation’ indicated
or the file SCHED in SP. Refer o Appendix N for TYCs,

11SCHING FOR JOB CMD

The present job has been aborted and the JCP is searching the job
stack for the next |JOB or IFIN command.

1 'taskname’ IN 'jobname’ MISSED 'xx' CYCLES

The task indicated in the job indicated missed 'xx' initiations by the
periodic scheduler.

1'teskname’ IN 'jobname*

TYC 'xx' [DELETED)

The task indicated in the job indicated received the type completion
'xx' when an INIT was attempted by the periodic scheduler, The
entry was deleted if indicated. Refer to Appendix N for TYGs.

HITOO MANY ASSIGNS

JCP has encountered more than 48 1ASSIGN commands in a job step.

[ITOO MANY CONTROL SECT.

JCP Looder has encountered more than one nonstandard control
section. The load will be aborted.

1ITOO MANY DCB'S

The maximum number of M: and F: DCBs was exceeded during the
loading process. Approximately 27 DCBs can be occommodated by the
system. The excess DCBs will not be stored in the DCB table or the
disk file heoder.

TIUNSATISFIED REF xxxxotxx

Indicated REF was not satisfied during the loading process. This
alarm occurs only on LL if no mop was requested, or on LO if a map
was requested.

1IUNSATISFIED REF's DURING LOAD

]

This message is typed to the operator on OC at the end of a load if
any unsatisfied REFs were encountered during the loading process.

1 IWARNING: NONEXIST.
FILE seoxexxsoexx “

JCP has processed on |ASSIGN command that assigned o DCB to o
nonexistent file. JCP will continue normal processing.

JCP Messages

3. OPERATOR COMMUNICATIONS

Communications between the operator and the system take
ploce through operator key-ins (solicited and unsolicited)
and monifor printouts (CP-R messoges).

CP-R MESSAGES

CP-Rand associated processors (as selected during SYSGEN)
output messogeson the OC device wheneveroperator action
is requiredor to inform the operatoras to the statusof events
(including errors)taking ploce within the system. CP=R out-
put messoges are fisted ond described in Table 7.

TRAP HANDLER MESSAGES

In oddition to the messoges listed in Table 7, the following
messages are output by the trap handier upon occurrence of
the various traps if the user does not specify his own trap
hondling:

1IARITH, FAULT AT xxxxx ID = xxxxxxxx

1 IBREAK ERROR AT xxxxx ID = xxxxxxxxx

v

FIMEM, PARITY ERR AT xxsoox ID = axtxexacaoxxx

IMEM, PROT. ERR AT xxxxx ID = xxxxxxxx

TINONEXIST, ADD. AT xcxxx ID = xxxxxxxx

TINONEXIST, INST. AT atxxxx 1D = xxxxxxxx

PIPRIVILEGE INST, AT xxxxx ID = xxsxxxxxx

IISTACK OVERFLOW AT xxxxx ID = xxxxxxxx

FIUNIMPLE. INST, AT xxxxx ID = xxxxxxxx

HWDOG TIMER RUNOUT AT xxxxx 1D = xxxxxxxx
NoQ'e that the messoge "ARITH. FAULT AT xxxxx" is output
for the fixed point arithmetic overflow trap, the flooting~
point foult trap, ond the decimal orithmetic foult trop. The
message

"ERRxx ON CAL AT xxxxx ID = xxxxxxxx"
is output if a user program fumishes on invalid paorameter

while attempting fo use a service function. ID identifies

the trapped task.

Table 7, CP=R Messages and Responses

Messoge!

Meoning

Operator Action

{lyyndd **** message

"yyndd" is the control device and job
name for the teminal job. "Messoge”
is the messoge sent by the terminal
user to the operator,

Action is determined by the content
of the terminal user's messoge.

! lyyndd ATTENTION INTERRUPT

An ottention interrupt was received
from the specified device.

No action is required.

1 lyyndd ERROR'"

An irrecoverable error has occurred.

No key=-in response required except
for card reader, Forcord reader error,
remove last card in output hopper for
jom ond replace it or o duplicate 1o
input hopper. Key in CRndd R@. If
card or reader cannot be fixed, key
in CRndd E @ to inform the request~
ing task the card reader erraged.

ml(ey-in may be required depending on device type,

'Memges beginning with !lyyndd in the message column will vary according to device type. Therefore the second words
in such messoges are listed alphabetically.

i background, requires an 1/0 key-in fo continue or retry 1/0 operation on the device; if foreground, the operation is
errored and no key=in is required or expected.

26 Operator Communications

Table 7. CP=R Messages and Responses {(cont.)

Message

Meaning

Operator Action

1 lyyndd ERROR, NOT -OPERATTONAL

Device went not operational during
1/0 operation.

No action required.

I lyyndd ERROR, POSITION LOST

A magnetic tape unit either retumed
inconsistent status or the tape posi-
tion is indeterminant following a tape
operation.

No action required.

1 tyyndd 1/0 TIMED OuTH

An 1/0 interrupt failed to retum
from the device used for an 1/0O

operation in the software timeout
period allowed.

Unless the timeout occurred in a
foreground task, the message always
requires operator action, If the
cause and/or correction is unknown,
key-in yyndd E®. If the cause is
known, key in either yyndd R® or
yyndd C® fo specify whether the
1/0 operation should be or should
not be retried. (R specifies refry;
C specifies continue.)

I lyyndd KEY-IN PENDING

An 1/0 operation is waiting for an
operator key~-in on the indicated
device. This message is repeated
at ‘intervals.

Supply the appropriate key-in.

! lyyndd MANUAL

Device was in monual mode at SIO
initiation,

Ready the device, No key~in is
required.

1 lyyndd S1O REJECT, CC = 10 -

S10 instruction retumed CC1 and
CC2 os nonzero (10).

Correct condition and key in yyndd
R®. If condition cannot be repaired,
key in yyndd E® fo inform task the
1/0 has errored.

1 lyyndd SIO REJECT, CC = 01 -

SI10 instruction retumed CC1 and
CC2 as nonzero (01).

Correct condition and key in yyndd
R®. Ifcondition cannot be repaired,
key in yyndd E® fo inform task the
1/0 hes errored.

I lyyndd TEST MODE

Device went info test mode during
1/O operation.

No action required.

I lyyndd UNRECOGNIZED'

S1O instruction retumed CCl and
CC2 as nonzero (11).

Correct condition and key=-in yyndd
R®. Ifcondition cannot be repaired,
key in yyndd E® to inform task the
1/0 has errored.

I lyyndd WRITE PROTECTED'

An attempt was made to write fo a
write protected device or disk track.

If the write is fo be permitted then
change the write protected status of
the device or track and key in yyndd
R@. If the write is not to be per-
mitted, key in yynddE®.

| IALARM 3000000300

A system inconsistency was detected,
following the ALARM message. The
reason is indicated in the text,

See Chapter 5, “Availability Oper-
ating Procedures”.

11BACKGROUND IDLE

Background sequencing has been termi-
nated because JCP read a | FIN command
or encountered a critical error,

1f more background jobs are to be
run, key in C to restart background

sequencing.

CP=R Messages 27

Table 7. CP-R Messages and Responses (cont.)

{

mode,

Message Meaning Operator Action

I IBACKGROUND WAIT Background has executed o “WAIT" Key in C @ to continve background
request, processing.

11BKG ABORT WAIT Background has aborted in attended Key in “C" 1o continve, or "DB" o

dump background memory,

11BKGD JOB ident ON

Specified background symbiont job
has been selected for execution.

No operator action required.

1ICANT OPEN ERRORLOG

The emor log file was already in use
by error list program, full RFT, no
blocking buffer available, or a DED
key=in was in effect,

See Chapter 2 Availability Manual.

1 ICORE SAVED

Memory has been saved on the CK
area following a system fault.

No action required,

1 H'CORE USED, CAN'T
LOAD »xxxxxxxx

The specified primary program cannot
be looded for execution because its
required core space is already in use.

Key=in X @ to abort the job.

HICP=-R RESTARTED

CP-R is fully restarted following a
system ALARM and an auto-restart,
The date and time information have
been maintained and need not be
re-entered,

No action required,

1ICRndd CARD NOT FED'™

The cord reader was unable to feed
a card correctly,

Correctorreplace the cord in the read
hopper. Push RESET START and key in
CRndd R@to retry the operation.

! IDPndd IDLE

Indicated unit has no open files.

May be removed from the spindle.

I IERRORLOG ERROR

An irrecoverable write error was en-
countered while attempting to write
entries to the ER operational label.

Reassign ER oplabel to another output
device or "0",

1IERRORLOG FULL

While attempting to write entries to
the ER operational label, an end-of-
file, end~of=data, or end-of-tape
was encountered,

See Chapter 2 for Error Log purging
procedures, Avuoilability Monual,

L IFILE NAME ERR

A problem has occurred in attempting
to open or close a disk file through
an STDLB key=in.

Key-in X ® to abort the job.

111/0 ERR, CAN'T LOAD xx000uxx

An 1/0 error occurred or no blocking
buffer was available when attempting
to load the specified foreground pro-
gram for execution,

Key=in X @ to abort the job.

11JOB account, name, priority, ident

An input job was added to o list of sym=
biont files. Message has some format os
user's job card except for ident, which

is added to the end.

No action required.

IIKEY ERR

CP=R cannot recognize an unsolicited
key=in response.

Retry the key=in,

28 CP-R Messages

Table 7. CP-R Memages and Responses (cont.)

L 4

Message

Meaning

Operator Action

HILMI FULL, CAN'T LOAD ou0mexxx

The specified primary program cannot
be lcaded for execution because no
room exists in the Lood Module
Inventory,

Key-in X @ to abort the job.

1 1LOADED PROG sxsesxxxx

Specified primary programs were
loaded by Foreground Loader for ex-
ecution, Up to three progrom names
will be output in one message.

No action required. Outputting of
this message to OC may be prevented
by setting appropriate assembly time
software switch to bypass the code
causing the messoge.

I IMEDIA ABORTED REQ xxxx:yyyy

MEDIA request xxxx was aborted due
to reason yyyy where yyyy can be

OPER - operator keyed in "X"

NOMO =~ the MO oplabel is not
defined

OPNI - undble to open input file's
DCB

unable fo open output
file's DCB

on irrecoverable error
occurred during
preprocessing

OPNO

PREP

BUFS = insufficient job reserved

poges for blocking buffers

DEV - g fatal error occurred
during the copy

SPEC

invalid specifications were
detected

None. If request xxxx was initiated
by an operator or MEDIA key-in and
the couse of the abortion removed,
the key=in con be reentered.

1 {MEDIA MOUNT TAPES FOR xxxx

MEDIA request oo is ready to begin.

Mount tape or tapes required. When
ready, key=-in MEDIA] to initiate

copy.

1 IMEMORY FAULT

During a memory status scan, memory
status was found which indicated that
an error was detected by the memory
unit. An error log entry was recorded
for this problem,

No action required.

1INO PATCH AREA - CLEARB S
IGNORES MODIFY COMMAND

If this is OC, only the message portion
preceding the hyphen is output. If not
OC, the entire message is output.

If this is OC, input next command,
If not OC, idle machine, increment
address, and RUN.

1INO TSPACE, CAN'T
LOAD xxxxxxxx

A primary program load request could
not be satisfied because TSPACE was
not available for building FPTs or for
reading in the header,

Key in X @ to abort the job.

-t

HINONEXIST., CAN'T
LOAD »oxxxxxx

Specified program cannot be loaded
for execution because it does not exist
on disk, or required Public Library
does not exist on disk.

Retry. If message is output again,
key=-in X ® to abort the job.

CP=R Messoges

‘Table 7. CP=R Mesages and Responses (cont,)

OC, the entire message is output,

address, and RUN,

Message Meaning Operator Action N
1IPATCH LOC ERR-CORRECT AND If this is OC, only the message portion If this is OC, input next command.
CLEARB S preceding the hyphen is output. If not If not OC, idle machine, increment

1 IPAUSE commonds

A IPAUSE command has been read.
Comments field will have operator
instruction,

Press INTERRUPT switch and key in
C ® to continue reading from the
job stock ofter performing required

action,

11PLEASE KEY-IN DATE-TIME

CP-R has been booted in and requires
the date and time before other opero-
tions are allowed.

Enter DT mm,dd, yy, hh, mm

where
mm = month (1-12)
dd - day (1-31)
yy = year (00-99)
hh = hour (0~23)
min - minute (0-59)

| IPROCESSOR FAULT

During a processor status scon, pro-
cessor status was found which indicated
that an error was detected by a pro-
cessor, An error log entry was recorded
for this problem.

No action required,

11PUB LIB, CAN'T LOAD xxxxxxxx

Invalid request to load Public Library
for execution. All Public Libraries
must be automatically loaded by the
system as needed.

Either retry the job or key
abort the job.

in X® to

HIQUEUED AS NUM. xoxx

MEDIA copy request is accepted and
is assigned ident number xxxx.

No action required.

VIRELEASED PROG xxxxxxxx

Specified primary program was
released,

No action required. Message can be
prevented by setting appropriate
assembly time software switch to by~
pass code causing the message.

1IRLS NAME NA

Key=in request to release a foreground
program whose nome is not recognized
by the system.

Retry.

LISPURIOUS EXTERNAL INTERRUPT

An interrupt has been triggered but is
not connected to a task.

No action is required.

idle state,

[1Syyndd ERR xx An irrecoverable error occurred, Sym- No action required.
biont activity on specified device was
terminated,

1 1Syyndd IDLE Specified symbiont device entered No action required.

-
-

11Syyndd UNAVAILABLE

Specified device is currently unavail=
able to the symbiont,

No action required.

1 ITERMINAL JOB yyndd
account, name OFF

Indicates the terminal user is now in=
active. "yyndd" is the control device

ond jobname for termina! job. "Account,
nome" is logon verified user account, name,

No action required,

30 CP-R Messages

Table 7. CP-R Messages and Responses (cont.)

Message Meaning

Operator Action

HTERMINAL JOB yyndd
account, name ON

Indicates the termina! user is now
active. "yyndd" is ths control de-
vice and job nome for terminal job.
*Account,name"” is logon verified
user account and user nome,

No action required.

TIUNABLE TO CLOSE DCB soxxsxsox

The specified DCB was not closed in
the task during termination.

No action required,

HIXEROX CP=-R VERSION xxsesex

Output whenever system is booted in,

Message can be terminated by
hitting BREAK key on OC.

SUTPUT MESSAGE FORMATS

Output messages are printed in three different formats on
the Operator's Console. These formats are outlined below,

1. Messages without tabs are for operator's reference
at a later time and are typically generated by fore-
ground or background programs that wish to communi-
cate with the operator. They are similor to system
messages but have no time stamp,

2. System messages which begin with two exclomation
marks (11) will be preceded by a time stamp (hh:mm)
in column 1 through 5, followed by a single tab. With
normal tab settings the message willbe positioned 1inch
fo the right of the left margin.

3. Device control messages will have a time stamp in col-
umn ! through 5, followed by four tabs. With normal
tab settings the message will be positioned 4 inches to
the right of the left margin.

OPERATOR KEY-IN

After the system has been initialized, operator key-ins
permit the operator to control the execution of tasks by the
system (i.e., foreground tasks, background job stream, and
Control Task services).

With the exception of the DT key-in (which is requested by
the system at the end of system initialization but prior to
any other activity, if job accounting or error-logging hes
been requested), operator key-ins are unsolicited. That is,
on operator key=in is initiated by the operator depressing the
INTERRUPT switch on the Control Panel. (On a Xerox 550,
the ATTENTION key may be substituted.) This action

activates the Control Pane! Task which, in tum, triggers

the CP-R Control Task. When the Control Task becomes
the highest priority task in the system (that is, when all
foreground tasks are inactive), the system issves a prompt

character (a dash, "-") to the Operator's Console and waits
for operator input,)

Via the OC device, the operator inputs appropriate infor-
mation in the following sequence:

1. Optionally, types in an exclamation mark (1).

2. Types in the desired key=in oand any associated po-
rameters, (Refer fo Tables 8 through 11 for listing
ond description of Standard, Terminal Job Entry,
Symbiont, and Media Conversion key=ins.)

Types in a New Line character @ to indicate the com-
pletion of a key-in,

w

If a typing error is discovered before the ® character has
been keyed in, the error may be corrected by the operator
in one of the following ways:

1. If the erroneous character is the last charocter typed,
key in one cent sign (¢) character, retype the last
character correctly, and continue to type in the re-
mainder of the key-in. Indicate completion of cor-
rected key=-in by keying in the @ character.

2, If the erroneous character is within a few positions of
the last character typed, key in an appropriate number
of cent signs (storting with the last character, each
cent sign deletes one character and performs a simulated
backspaceofone position)until the erroneous character
has been effectively deleted. Retype comrectly, all
characters deleted and resume typing rest of key=in.
Upon completion of key-in, key in the @ character.

3. If the erroneous character is located toward the begin-
ning of the key~inor many positions from the last char-
acter typed, it may be more expeditious to key in an
EOM (End of Message) charocter, In this case, the
entire key-in is deleted and the monitor is ready for a
new key-in,

Operator Key=in 31

Table 8. Standard Operator Key-Ins

Key-In

Purpose . 1

yyndd o ®

Controls system action following on abnormal condition during en 1/0
operation, where "yyndd" is the physical device name of the device in-
volved, and "a" is a single character that requests a system action relative
to the device os follows: o =C — continue "os is"; @ = E — inform user pro-
grom of the error and tronsmit record "as is”; a = R ~refry the 1/0 opera-
tion; a = X —unconditionally abort the current operation on the device and
error the request,

ALARM ®

Forces an operator=initioted system alarm. See also REBOOT key-in.

OFF
ATT { ON }]@

1f OFF, the batch control commond IATTEND becomes illegal. If ON, both
the 1PAUSE ond IATTEND control commonds become legal. This command
allows the system fo permit or reject batch jobs that depend upon the pro-
grommer being able to interact with his job. Default is ON, See also PAU
key=in. '

BMEM[n] ®

Change memory allocation for the background job. The “n" specifies the
number of pages to be allocated to the background job. If "n" is not spec~-
ified, its background job memory is restored to its SYS GEN-defined value,
Allocations for background tasks using simplified memory management (SMM
option on the |OLOAD command) will not take effect until the current back-
ground job step terminates.

BREAK jobname ®

Transfers control to user's break~receiver routine if the user established break
control in the job via an INT service call. jobname is the name of the job to
receive the break signal.

c [5/0)®

If no parameters: Continue processing in the background. If the background
was in o wait or idle state, the system leaves that state ond proceeds, If "S"
parameter: Change the background control mode to symbiont, so the sym-
biont con start background when necessary. If "O" parameter: Change the
background control mode fo operator, so only the operator may start back~
ground. The symbiont can only stort bockground from on idle state. It can
not clear a background wait,

cCC®

Retransfer control back to the C device from OC. Used in conjunction with
TY key=in.

enfii). ale

Disarm, arm and enable, or trigger specified interrupt. The "location" spec-
ifies the hex address of the interrupt; “label" specifies an interrupt label;
"D" is ysed fo disarm specified interrupt; *A" is used fo arm and endble;

"T" is used fo orm, enable, and trigger the interrupt.

loaddr

CKkD Iooddr,hiuddr}@

Selectively dump system output saved in the CK areo after a system alamn.
The “loaddr" parameter specifies the lowest address fo dump. The "hioddr"
parameter specifies the highest address to dump. Default cases for “loaddr”
ond "hioddr" are 0 and high core respectively, Activation of the Control
Pane! Interrupt during the MAP portion of the dump stops map output and
starts the DUMP portion. Activation of the interrupt during the DUMP por-
tion terminates the dump.

coC ®

Job wes halted because of error in control command. Continue from OC with
correct control command (ofter depressing the Control Panel Interrupt Key).

Operator Key-In

Table 8. Stondard Operator Key-Ins (cont.)

Key-In Purpose
loaddr . . .

CRrD looddr hioddr} © Identical to CKD key-in obove except that the dump is read from the SE
oacar, oplabel rather thon the CK area (see CRS key-in below).

CRS® Preserve an alarm dump by copying it from the CK orea fo the SE oplabel in

1024-byte records.

DEBUG taskname [, (JOB, jobname))®

Causes the named task in the named job to be run under DEBUG control,

F
X
DED
UND} yyndd, g

DED dedicates a device, device controller, or JOP. UND undedicates a
previously dedicated device, device controller, or IOP. F defines the de-
vice to be dedicated to the foreground; X prevents device use and aborts any
existing requests; N prevents device use but does not abort existing requests
for use; D restricts a device for diognostic use ond aborts any existing re-
quests; R specifies that the disk pock will be removed (DED) or has been re-
ploced (UND) from unit DPndd; 1 dedicates or undedicates all devices on
1OP n (of yyndd); D dedicates or undedicates only device yyndd. If neither
1 nor D is specified, oll devices on the same multiunit controller are dedi-
cated or undedicated.

DISPLAY[L)®

Display current status of all tasks in the system on the LL or OC device.
Output is to the OC device unless LL is specified. A typical display output
is shown in Figure 3.

DM
l DF][from,'o]LT][,S] @)
D8

Dumps the contents of specified memory onto the device that is permanently
assigned to the DO oplabel. DM specifies a real-memory dump with default
boundaries being zero ond the end of the monitor. DF specifies a real-memory
dump with default boundaries being the limits of the first Foreground Private
Memory partition. DB specifies a virtual-memory postmortem dump of back-
ground with default boundaries as the limits of Task Virtual Memory.

DF or DM requests are performed immediately. A DB dump request is not per-
formed until the next task termination occurs in background (either for JCP or
ony other processor or user program),

1f "from, to" is absent, the entire default area will be dumped; if present, the
first word address in hex and last word oddress in hex of the selected arec are
defined. If “, T" is obsent, core memory is dumped in hexadecimal; if present,
core memory is dumped in hexadecimal and EBCDIC. *S' specifies the dump
will be in a short-line format ot four words per line.

DT mo, day, yr, hr, min ©

Input of current datc and time. Exomple: DT 8, 17, 69, 22, 30.

ON
ELOG{OFF | ®
PURGE

Tums error logging procedures on and off. Eliminates the majority of the
execution time overheod associated with error logging but does not prevent
gathering of the error statistics for the ESUM display. PURGE clears the
error log and all error, log and 1/0 counts,

o

{E::S;;D}hﬂ © Creates an error log entry containing the supplied text (56~byte maximum).
ESUM[LL) @ Display o device error summary on OC or LL. A typical error summary is

shown in Figure 4,

Operator Key=In 33

Toble 8. Standard Operator Key=lns (cont.)

Key=-In

Purpose

EXTM taskname[, (JOB,jobnome)] ©

Terminate a task in @ job. The "taskname" is the nome of the task to be
terminated. “JOB" is o keyword that indicates that the job under which the
task is running will be specified. (If JOB is absent, jobname defaults to the
CP-R job.) The "jobname" is the name of the job under which the task to be
terminated is running.

FG®

Permit loading of foreground program from background job stack for execution
via a IRUN or {INIT control commond..

INTT fid[, (JOB, jobnome)] [, PRI] ~—

L [,STOP]L. (PRIO, xxxx)] —
(- [.DEBUG)[,TS]®

Read named task into memory ond initiate it, The fid is the file identifier for
the lood module file, "JOB" is a keyword that indicates that the task is to
tun under a job other than the CP-R job (if "JOB" is not specified, the task
runs under the CP-R job). The "jobnome" specifies the name of the job under
which the task is to be run, PRI specifies the task is primary ond if not spec-
ified the task is run as secondary. STOP is an option that specifies the task
(secondary only) is to be left in suspended state after lood. The default is to
execute directly after lood. PRIO is a keyword to specify task priority {for
secondory tasks only). Default is to run under lowest-priority dispatcher at
lowest software priority. This is X'EFEF* for nontimesliced tasks or X'FFFF'
for timesliced tasks. xxxx is the task's priority value (in hex). The first

2 characters specify the interrupt level minus X'4F' of the task's dispatcher,
and the last 2 characters specify the task's software priority, DEBUG indi-
cotes the task is to be initially under Debug control. TS indicates that the
task is to be time=sliced.

INTLB label, loc (hex)®

Change assignment of interrupt labels.

KJOB jobname @

Terminates all tasks in the named job.

ON
PAU [orr}] ©

If OFF, both the IPAUSE and IATTEND batch control commands become
illegal and any 1/0 operation which would otherwise have mode a request
for an operator's key=~in to correct an 1,0 problem is aborted with a TYC4,
If ON, only the !PAUSE commond becomes legal. This command allows the
system to permit or reject batch jobs that depend upon operator interaction
(e.g., tape mounting) fo continue., Default is ON. See also ATT key-in.

(SLICE,n)
Q Egng: :; reed) © 1f no parameters are used, the current settings of the time=slicing controls
(QMAX, 1) are reported. These parometers are number of slices per second; ond slice
' length, QMIN, QSWA, and QMAX in milliseconds. If parometers are spec-
ified, the corresponding controls are set as specified. The parameter "n" is
a decimal number of slices per second that must be between 1 ond 500, ond
must divide 500 evenly, The parameter "t" is milliseconds (decimal) and
must be 1 or more.
NORETRY
RETRY ‘
- Q30 ':Aoern\, rees |® This command is available on o Xerox 550 system only, It affects the con-
NOWDT tents of the Q30 register as follows: "
wDT NORETRY: set bit 0 No instruction retry
RETRY: reset bit 0 -«
NOPARITY: set bit 1 No parity checks
PARITY: reset bit 1
NOWDT: set bit 2 No watchdog timer
WDT: reset bit 2

Default is no chonge for each bit.

34 Operator Key-in

Table 8. Standard Operator Key-Ins (cont.)

Key=-In Purpose
Q31 [option,...] © This command allows simple examination and modification of the address stop
. controls (Q31 register) of a Xerox 550 system. It is not available on a
Sigma 9 system, The “options" are any of tie following:
(ADDR,x) Set address to "x" (hexadecimal).
(Symbol, x) Set oddress to “x" plus the value of "symbol". "“Symbol"
may be any symbol found in the symbol table in module
CRS2 or any overlay name.
(STM, x) Set address to "x" plus X'6000',
(ROOT,x) Set address to "x" plus X'600E'.
INST Compore execution access addresses.
WRITE Compare write access addresses.
ANY Compare any aoddresses accessed.
ALL (Same as ANY.)
PAGE Compare page addresses,
WORD Compare word addresses,
REAL Compare real oddresses.
VIRT Compare virtual oddresses.
STOP Stop execution on compare,
HALT (Same o STOP.)
BEEP Briefly sound audio alarm on compare.
CLEAR Reset all flag bits (but save the oddress).
Any bit or field not specified is not changed. If no options are specified, the
Q31 register content is typed as a hexadecimal number,
REBOOT ® Forces an operator~initiated system alarm and an automatic reboot of the
system. See also ALARM key=-in.
RLS taskname @ Terminate a foreground primary program running under the CP-R job.
RSY [jobname] Removes SY key~in for the specified job, retuming to normal software disk

write protection. Defoult for ‘jobname' is 'BKG' which is the background
job. Note that the SY key=in is automatically removed from background
whenever a |JOB or IFIN command is processed.

RUN taskname |, priority] @

Lood and execute a foreground program running under the CP-R job. Only
primary tasks con be looded with this key-in. The name of the foreground
file to be looded must be input.

SCHED fid [, (JOB, jobname)][, PRI]—]

L [, (PRIO, xxxx)][, (STRT time)]]

L[, ONTV,interval [, DELE (el
L 1s)

Schedule a task for periodic INIT, The "fid" is @ CP-R file identifier with
one variation: the file name is actually a task name that may be the same
as the file name or related to it by o SETNAME CAL.

If neither an account nor an area is specified, the defaults are area FP and
the system account. If an area name is specified, the default is the system
account. Specification of a whole area is an error.

JOB is a keyword indicating that the task is to be INITed under a job other

* than the CP-R job. The defaultis the CP-R job. PRI specifies a primary task;

the default is secondary. PRIO is o keyword to specify task priority for sec-
ondary tasks, Defaultis to run under lowest-priority dispatcher at fowest soft-

ware priority. "XXXX" is the task's priority value in hex. The first two chor-

acters specify the interrupt level minus X'4F' of the task's dispatcher, and
the last two characters specify the software priority. TS specifies a time-
sliced task. DELETE specifies that the task is to be de-schaduled, STRT is a
keyword indicating that the time for the first INIT to the task is specified.
A value of zero or absence of the keyword causes on immediate INIT,

Operafor Key-In

35

Toble 8. Standord Operctor Key-Ins (cont.) "

Key-In

Purpose

SCHED fid (cont.)

The format of the time values for start time is as follows:

(LLLLyr-Jmm,]dd,]hh,Jmin,}sec]

where
yr means year (e.g., 76)
mm means month number (e.g., 9)

dd means doy (e.g., 5)

hh meons hour (e.g., 14)
min means minute (e.g., 30)
sec means second {e.g., 10)

Values ore optionally deletable from left to right; e.g., any value may be
omitted provided that all parometers to its feft are olso omitted. Thus, if

hh is omitted, yr, mm, and dd must also be omitted. The SCHED key-in

uses current date/time values for omitted values. An exomple of the STRT
option is:

...{STRT, 14,30,0)...

which would couse the specified task to be INITed ot 2:30 p.m. of the cur-
rent year, month, and day. Please note that omission of the 0 (seconds)

value would cause INIT ot 14 minutes and 30 seconds of the current year,
month, day, and hour,

INTV is a keyword indicating that the period between INITs is specified in
seconds. If the specified value is not an integral multiple of five, it is
rounded up to the next highest integral multiple of five. A value of zero or
absence of the parometer causes the INIT to be issued once ot the specified
STRT time. The presenceor absenceof the STRTand INTV keywords is inter-
preted as follows:

INTV STRT Result

present absent periodic INIT, starting ot now + INTV
present present periodic INIT, starting ot STRT

absent absent INIT once immediotely

absent present INIT once at STRT

SJOB jobname [, (DEBUG, T Yndd)] © =

l—- [,(ACCT, xxx)]

Creates the nomed foreground job by setting up job controls and table entries

but does not initiate any tosk in the job. DEBUG indicates o Debug control-

console device is specified. TYndd is the address used by Debug for communi-
cation with the user, ACCT indicates on account is specified. xxx is the
account the named JOB is to be associated with.

SNAP[FILE, fid] @

Saves core (the monitor) on the specified file or to the SE oplabel by default,
-

STAT tasknome [, (JOB, jobname)]

Output the status of the specified job on OC. The “taskname" defines the

name of the task from which status information is desired. The "JOB" is a

keyword that indicates that the job under which the task is running will be

specified, (If "JOB" is not present, jobname js defoulted to the CP-R job.)
The "jobname" is the name of the job under which the task is running. The
task status will have the format illustrated in Figure 5.

36

Operator Key-In

Teble 8. Standard Operator Key=Ins (cont.)

Key-In Purpose
fid

STDLB label, {device] ® Changes o current oplabel assignment. The new assignment will stay in effect
oplabel until changed by another STDLB key-in or system Is rebooted, “label" spec-

ifies the oplabsl to be assigned, which must have been previously assigned at
SYSGEN. “fid" specifies a disk file or disk area. “"device" specifies a
physical device nome, or "0" for the null device. "oplabel" specifies one
of the SYS GEN-defined oplabels.

SY [jobname] ©

Overrides normal softwore disk file write protection for the specified job.
The default for ‘jobname’ is 'BKG' which is the background job. The SY
privilege is removed by the RSY key in or job termination. For background,
it is also removed automatically when a 1JOB or IFIN command is processed.

v ® Transfer control from the C device to OC (typewriter) for reading control
commands. ,

we Suspend current background job and enter WAIT state.

X ® Abort current bockground job. Message on OC and LL will show last loco-
tion executed,
Delete this line, (On a Xerox 550, the combination "CONTROL" and " X"
may be substituted.)

® Ignore operator key-in request.

¢ Delete last character, (On a Xerox 550, a "\" may be substituted.)

Table 9. Terminal Job Entry Key=-Ins
Key-In Purpose

CONTROL yyndd @

Couses a control interrupt (equivalent of Yc) to take place for the named
terminal job. It is used for jobs previously created by the LOGON key=in,
Active terminal jobs will have been logged on OC as they become octive,

LOGON TYndd ®

Couses device TYndd to be processed by the logon processor and so perform
as a normal TJE user,

OFF ® Prevents any new on-line user from logging on. An OFF key=in and an ON 0
key=in are equivalent,
ON{:LL} ® Specifies the number of on=line users allowed on the system ct‘:ny one time,

When n users are on, no additional users are allowed to log on until a cur~
rent user logs off. All makes all lines available,

smo{iﬁ“ , messoge ©

Couses the text messoge to be sent to the TJE terminal specified by yyndd,
or sent to all active terminal users if the ALL option is specified.

Operator Key-In 37

e

Table 10. Symbiont Key=Ins

Key<In

BATCH fid @

Ploces the specified file on the symbiont input queue. If background control
is in symbiont mode (see 'C' key-in), bockground is started. A batch file
may contain only one background job.

DELETE ident ©

Deletes symhiont files, All input and output symbiont files associated with
the specified job ID will be deleted. IF the specified job is still active, the
DELETE key in hos no effect.

DO ©

PRIORITY ident, priority ©

RDO ®

sS ®

Syyndd, option

Sefs a switch fo cause the symbiont system to delete each one of o job's files
from the OS area o soon os it hos been output. When the DO key-in is in
effect, the R and B options of the Syyndd key-in have the same effect as the
C option. 1f DO has not been keyed in, the switch is set such that all a job's
output files ore deleted when its lost file has been sutput.

Changes the priority of a job in the symbiont area, where "ident" is the job
ID ond "priority" is the new priority to be associated with the specified job.
Priorities are expressed as hexaodecimal values from O through 7, ‘'where 7 is
the highest priority. A priority of 0 inhibits selection of a job for execution
in the IS areu and prevents output from o job waiting in the OS area.

Used in conjunction with the DO key-in ond couses deletion of a job's files
in the OS area to occur when the job's last file hes been output. See DO
key=in.

Initiates symbiont input when only one symbiont input device exists, The
key-in is not allowed if more than one symbiont input device exists, If
background contro! is in symbiont mode (see 'C' key-in), each time symbiont
input defines a new job, the symbiont insures that background is started.

This symbiont key=-in gives the operator control of the symbionts, where
"yyndd" is the physical address of a symbiont device and "option" specifies
the action to be taken and may be one of the following:

1 initiate symbiont 1/0 on the specified device, Output sym-
bionts do not require this key~in as they are self starting
unless on "L" or "T" is in effect,

S suspend symbiont activity for the specified device,
C continue symbiont activity for a previously suspended device,

B[,n] continue symbiont activity for a previously suspended device.
Before the output is continued, the output file is bockspaced n
line printer poges. The default will be one line printer page
(a line printer poge is approximately 37 records), If the deice
is not o line printer or if the DO key=-in is in effect, B has the
same effect as C,)

R restart symbiont activity for o previously suspended device.
Symbiont activity will start from the beginning as if it had not
been suspended, If the DO key~in is in effect or if Mis is an
input symbiont, R hos the same effect as C, -

L lock out the symbiont from future activity after this file, After
completing the current file, the symbiont terminates. An input
symbiont will terminate when the next 1JOB or IFIN card is
read. An Syyndd, | key-in is required to restort symbiont activ-
ity on the device.

38 Operator Key-In

-
-

Table 10, Symbiont Key-Ins (cont.)

Key-In Purpose
Syyndd, option (cont.) T has the same effect as the "L" option except the device is re~
' moved from the symbiont pool if it was not dedicated to sym-
bionts at SYSGEN,

Q save the current output file and terminate. What remains of
the file is retumed fo the output queue and the symbiont is
locked immediately, The entire file is saved if the symbiont
is not in DO mode. When the system assigns a new symbiont
output device to the file, the output operation is continued
from where it was stopped. Q is useful in moving a file from
a down device fo one that is working.

X release the current job file and begin processing the next job
file.

If background control is in symbiont mode (see C key=in), each time

symbiont input defines a new job, the symbiont insures that background

is storted,

Table 11. Media Conversion Key-ins

Key-In Purpose
1

MEDIA ;‘ ® Either to control the operation of the MEDIA task or to specify a MEDIA copy
X of an input source to an output destination, where control operations are:

I = initiate the MEDIA task or resume operation if it has been stopped.

L = prevent the start of any new copy operations after the completion of the
curmrent operation. S =suspend the current operation. X =abort the current
operation and do not post processing.

FILE, fid
MEDIA (N [°P }) Copy operations request MEDIA to copy a file on a disk tape, or cords to on-
! yyndd} other file, which may be on o disk, cord punch, tape, printer, or, if the in-
put is on a disk, a keyboord printer. One or more options moy be given to
SFILE. n specify pre- and post-processing of the input and output mediums,
ALL
L], ({pEL Jovo o] where
REW SFILE,n skips a tape n files forward before the copy begins.
UNLOAD ALL continues copying successive files until a double end-of-file is
found.
gy FILE, fid DEL deletes a disk file after the copy.
“oun (e) .
yyndd REW and UNLOAD rewinds (unloads) a tape after the copy.
NVFC inhibits use of the first byte in each record avg VFC byte in
[(NVEC) A printed files.
i'::DC E,n SPACE, n causes n lines to be skipped between each printed line
when NVFC is given.
, (1 SFILE, n),...@ .

WEOF, n ADD caouses the input file(s) to be odded to the end of a tape already
L REW containing files.
(UNLOAD | 4 WEOF,n writes n EOTs on the output fope ofter the copy.

Operator Key-In 39

The disploy has the following format:

PRI TASK TASK TASK JOB TASK TASK
SEC NAME PRIO STAT NAME FWA 1WA

S CTRLTASK FEFE 10 CPR 00000 O3E4D
S MMEXEC FFFF 20 CPR 06000 1DFFF
S BKG FFFF 20 BKG 06000 1DFFF
P CTRLTASK FEFE 80 CPR 00000 O3E4D

where

P indicates o primory tosk.
S indicates a secondary task.

TASK PRIO is the hexadecimal priority value
ossociated with the task.

TASK STAT is o representation of the task's
status, os follows:

80 - task is primary

40 - task is rolled out

20 - task is stopped

10 - task is in execution

08 - task is in initialization
04 - task is suspended

02 - task is time=sliced

01 - task is swapped

00 - task is executable

FWA ond LWA stand for first-word oddress and last-word
address respectively. :

Figure 3. Display Format

The analysis and subsequent action from on operator's
key=-in is performed at the Control Task priority level. If
the operator key=in is not recognized os a valid input, the
following message is output on the OC.

IIKEY ERR

In which case, the operator should retype the input cor-
rectly. Note that if the typewriter is busy at the time of
the Control Panel Interrupt (i.e., waiting for an input to
complete), the operator must complete the input before the
system will output the prompt charocter,

COMB!INED KEY-INS

To expedite operator key-ins, the following combinations
of key-ins are recognized:

Combined Form Result

FGC Execute FG and C key-ins.
SYC Execute SY and C key-ins.
SFC,FSC Execute FG,SY, and C key=-ins.
TYC Execute TY and C key-ins,

40 Operator Key=In

09:23 ocT 25,'73

YYNDD MDL# ACCESSES ERRORS
TYAO1 7012 76 0
LPAO2 7445 1037 0
CRAO3 7140 110 (]
CPAO4 7160 13 0
9TA80 7322 1760 0
9TAS81 7322 V] 0
9TA82 7322 273 6
9TA83 7322 0 0
9TAD]1 7333 0 0
9TAD2 7333 0 0
7TAEO 7372 0 0
7TAE1 7372 0 4]
DPDFO 7242 25752 0
DPDF1 7242 0 0
DPDF2 7242 0 0
DPDF3 7242 0 4]
DPBE4 7275 0 0
DCBFO 7212 0 0
DCCFO 7232 1651 1]
DCCF1 7232 0 0
DCCF2 7232 0 0

6 FILED LOGS, 0 LOGS LOST
where

YYNDD ond MDL¥

input at SYSGEN.

correspond to parameters
defined on the :DEVICE control commands

ERR/1000

CO0OO0000O000DODODO0OOCOHOOOOO0OO

ACCESSES is the number of SIOs issued for
each job.
ERRORS is the number of error retries and error

completions for each device.

ERR/1000

ERR/1000 = (ERRORS*1000) /ACCESSES if
ACCESSES > 0.

ERR/1000 = 0 if ACCESSES =0.
-

FILED LOGS
entries that have been successfully filed.

LOGS LOST

is the total number of errr log

is the error rate computed as follows:

is the number of log entries lost
because error log filing could not take place.

Figure 4. Error Summary Example

DEVICE CONTROL
STATUS xooucocooooosx PRIORITY soxx : : ‘ :
®inary) thexodecimal) K the system encounters on abnormal condition during
an /O operation, o pertinent message to the operator
is output on the OC device. Such o message is of the
where binary status bits are as follows: form

Bits Value Meaning {1 name message

0 1 Task in final termination.
1 1 Task connected to CAL2, where
2 1 Tosk connected to CAL3. name is the physical device name, yyndd, or the

disk file name.

3 1 Tosk connected to CAL4.
message is the message string informing the oper-
ator of the specific condition that has been de-

4 1 Background task. tected; for example:

5 1 Secondary task. ERROR (error was detected on operation)

or

é 1 Task being aborted.

MANUAL (device not ready)
7 0 Task initiated via RUN.

1/O messages ore discussed below, grouped according to the

1 Task initiated vio INIT, fYPe of device to which fhey OPP'Y-

8 1 Lood to be performed.
9 1 Public Library used by primary tasks,

0 FOR
10 1 Public Library used by secondary /0 KEY-IN FORMAT

tosks. After correcting the abnormal conditions, the operator re-
sponds by meons of a key-in. The format for an /O
1 1 Release fo be performed. key~-in is
12 1 TEL control requested. " °®
13 1 Task is loaded, where

) yyndd s the physical device name of the device
14 ! Task is run queved. involved in the 1/O operation.

15 1 Breck control requested. a is a single character that requests a system action

relative to the device, as follows:

: C Continve “as is".
Hexadecimal priority characters are as follows: First -

two hexadecimal characters correspond to interrupt E Inform the user progr:m of the error and
fevel minus X'4F'., For secondary tasks this is the transmit record "as is".

level of the dispatcher for the tosk., Last two hexo-

decimal choracters are the software priority of o sec~ R Retry the 1/0 operation.

ondary task, or zero for o primary task.

X Abort the pending 1/0.

Figure 5. Task Status Format ® is the NEW LEBNE code.

Device Contro! 41

CARD READER MESSAGES/KEY-INS

If the card reader fails fo read properly, or if o validity
error occurs, one of the following messages is issuved:

1 ICRndd ERROR
11CRndd CARD NOT FED

A FAULT indicates that the error condition occurred prior
to any dato being tronsferred; an ERROR indicates thot at
least one byte was read. After correcting the condition,
the operator responds with an 1/O key=-in message. The
action character selected depends on the circumstances
causing the error condition.

If o feed check error or a power failure occurs, CP=R out-
puts one of the following messages (depending on where in
the read cycle the error took place):

11CRndd ERROR

11CRndd CARD NOT FED

1 ICRndd TIMED OUT

If the cord in the hopper is domaged, the operator replaces
it with a duplicate, presses the RESET button on the card
reader, and responds with one of the following key~ins:

CRndd R @

CRndd C ®

In the event of a power failure, the operator presses the
RESET button on the card reader and responds with the
key-in:

CRndd R @

If the cord stacker is full, if the hopper is empty, or if the
device is in the monual mode, the following message is
issued:

1 ICRndd MANUAL

The operator corrects the condition and then presses the
START button on the card reader.

CARD PUNCH MESSAGES/KEY-INS

Instead of outputting an error message when a punch error
is first detected, the 1/O hondler ottempts to punch a card
x times (x = NRT, a DCB parometer specified by the user)
before the following message is issued:

11CPndd ERROR

This message indicates that the card punch is not function~
ing properly and the operator should reevaluate the job

42. Device Control

stock based on this knowledge. Improperly punched cards

ore routed fo an alternate stacker. ‘

If the input hopper is empty, the stocker is full, or the chip
box is full (some devices), or if the device is in the manual
mode, the following message is issved:

11CPndd MANUAL

The operator corrects the condition and presses the START
button on the card punch.

If a power fajlure or o feed check error occurs, the system
outputs one of the following messages (depending on where
in the cycle the error took place):

11CPndd ERROR

1CPndd TIMED OUT
If the card in the hopper is domaged, the operator removes
it, presses the RESET button on the card punch, and responds
with the key-in

CPndd R @
In the event of a power failure, the operator presses the
RESET button on the cord punch and responds with the
key=in

CPndd R @

DISK PACK MESSAGES/KEY-INS
If the operator enters the key=in
DED DPndd,R @

and there are no open files on the specified disk pock,
CP-R outputs the message

LIIDLE

If there is ot least one open file on the specified disk pock
at the time the DED key-in is performed, CP-R will output
the message

11DPndd IDLE -

when there is no longer on open file on the indicated disk
pack. The operotor may now remove the pack from the in-
dicated unit, insert a different pack, ond key in

UND DPndd,R @

to allow use of the new pack.

DISK DATA PROTECTION

Software protection of the data on disk storage is provided
on disk file and area occesses, Areas with write protection
code 'S' (system) may not normally be written by any user
program. Areas with protection 'F' (foreground) can not
nommally be written by background programs. Disk area
protection is specified when the area is defined by SYSGEN.
Write protection does not normally apply to device-access
diskoperations, but this typeofaccess is normally permitted
only to foreground programs. All software restrictions on
disk access may be overridden for a specified job (including
BKG, the background job) by use of the SY key=in. The
message

11yyndd WRT RESTRICTED
or
I IPAUSE KEY-IN SY

(if included in the background commond stream) will be
output on OC to inform the operator that access to a pro-
tected disk area is requested. The operator would not nor=-
mally grant system privileges (key-in SY) unless he was
assured that it was authorized for the requesting job.

LINE PRINTER MESSAGES/KEY-INS

When on irrecoverable print error is detected, the system
outputs the following message:

"~ 11LPndd ERROR

The 1/0O heondler ottempts to print g line x times (x = NRT,
a DCB variable specified by the user)before outputting the
above message. The operator's response after correcting the
condition depends on the specific device and circumstances,

If the printer is out of paper, if the carriage is inoperative,
or if the device is in the manual mode or off, the following

message s issued:
11LPndd MANUAL

The operator corrects the condition and presses the START
button on the line printer,

If the line printer power is off, the system outputs the
following message: .

11LPndd UNRECOG '

If a printer went into test mode during an 1/0 operation,
the following message is issued:

I lyyndd TEST MODE

The operator should correct the condition and respond with
the key-in

LPndd R @

Ifa printer became nonoperational during an 1/O operation,
the following message is issued:

llyyndd NOT-OPERATIONAL

The operator should correct the condition and respond with
the key-in:

Hyyndd R ©

MAGNETIC TAPE MESSAGES/KEY-INS

If an error occurs during the reoding or writing of mognetic
tape, the 1/0 handler ottempts a recovery x times (x = NRT,
a DCB varigble). If the error is irrecoverable, the user is
informed via an error retum,

If o tape unit is addressed and there is no tape mounted or
power Is off, the following message is issued:

119Tndd UNRECOGNIZED

~ Ifan attempt is made to write on a tape unit without a write-

permit ring, the following message is issued:

119Tndd WRITE PROTECTED

The operator's key-in response depends on the circumstances,

Device Control 43

4. INPUT/OUTPUT OPERATIONS

The CP-R 1/0 system provides the user with the copability
of performing input/output operations on standard Xerox
peripheral devices. An 1/0 request is made through execu-
tion of a CAL 1instruction that oddresses a Function Param-
eter Table (FPT), which in tum is o list of parameters that
define the request. The FPT addresses o Data Control Block
(DCB), which is a list of parameters that define the nature
of the data file. The DCB then addresses a Device Control
Table (DCT) entry or o RAD File Table (RFT) entry, depen-
ding upon whether the data file concerned is associated
with a peripheral device or with o disk file. The DCT entry
contains the device status parameters and the RFT entry
contains the disk file parometers.

The CALlinstruction and FPT must be generated ot ossembly
or compilation time. Symbol, Macro-Symbo!, or AP users
must include both the CAL1and the FPT in the source code.
For FORTRAN users, the compiler generates the necessary
CALls ond FPTs.

For users of the Xerox AP processor, o set of high-level 1/0
procedures is provided. These procedures translate, at os-
sembly time, to the requisite CAL1 instructions and appro-
priate FPTs (vio assembly-system CPR). The procedure calls
for 1/0 and other types of system services ore described in
Appendix A.

All DCBs aore given nomes beginning with M: for system
DCBs orF: for user DCBs. The DCBs may be included in the
source code if desired. 1fnot included, the Overlay Loader
generates the DCBs necessary to satisfy any unsatisfied ref-
erences to F: or M: DCB names. System DCBs generated by
the Loader have default porameters; user DCBs generated by
the Loader are left blank.

The correspondence between a DCBand a device or file can
be established by using the 1ASSIGN control command or
ASSIGN service function. Other DCB porameters describ-
ing the data file may also be set by the IASSIGN control
commoand or by the DEVICE/FILE Mode service function.

Two types of Read/Write requests are provided. Type I re-
quests have the completion status posted in the DCB. The
disadvantage of this type of 1/O operation is that o DCB
cannot be shared among requests in different tasks becouse,
in general, it is impossible to associate the completionstatus
in the DCB with a specific request. For this reason TYPE Il
requests are provided.

Type 11 requests result in the completion status being posted
in the FPT associated with the request. This enables several
requests (perhaps in several tasks) to be in progress simulta-
neously on o given DCB. Type Il requests require that the
associated FPT must be in memory and not in a register.

The CHECK function tests for the completion of READ/
WRITE requests that are performed without waiting for com-
pletion. In no-wait requests, the CHECK function must be

44 Input/Output Operations

used to couse the DCBor FPT to be posted with the completion
code ond actual record size.

PERMANENT FILES

Permanent files are defined through RADEDIT by use of the
:ALLOT command or through the ALLOT service call. Data
can be entered through RADEDIT or any progrom that uses
the system 1/0O. At definition time, the following file
porameters are given by the user:

File name (maximum eight characters),

Disk area (optional).

Disk file account (optional). ’

File organization (blocked, unblocked, compressed).

Record size (for blocked or unblocked files to be
accessed sequentially).

Granule size (for files to be occessed directly).
File size.

In systems which do not include the disk file occount option,
the user must specify the area name on dll disk file refer-
ences, but may not use an account name. In systems which
inciude the option, either the disk area nameor the disk file
account name or both may be omitted ond defoults will be
provided. In most cases, if an account name but not an area
name is specified, the file will be defined/found in one of
the public areas on the system (at least one of which must
have been defined by SYSGEN, in order fo support this de-
foult). If an arec name is specified, but not on account
nome, the system account nome is the default. If neither
area nor account name is specified, the defaults are the
account of the user and one of the public areas. These de-
faults allow several ways to chose between simplicity ond
detailed control in dealing with the disk file data base.

TEMPORARY FILES

Temporary files are in the Background Temp orea and have
the fixed names X; (1 =i <9), GO and OV. The size for
these files can be set by using the IALLOBT control com-
mond. If no IALLOBT control command appears within o
user job, the files assume defoult sizes that are set by the
Job Control Processor. The files X; should be considered as
primarily for temporary use within a single job step, since
they ore all cllocated from a single area with X; 4+) be-
ginning just above X;. Therefore, changing the si2e of a file
X; can couse a change in location of files X; for ; >i. GO
and OV are allocated from the top of the temporary file orea
downward. A change in the size of files X; therefore has no
effect on the position of these files on the disk.

Since the size and location of temporary files can be changed
through background job control commands, they must not be
used by foreground progroms.

FILE ORGANIZATION

BLOCKED FILES

Blocked files contain fixed length records whose length is
less thon or equal to 128 words. In blocked files, the largest
possible integral number of records is combined into 256~word
blocks. These blocks are basic units of data transmitted to
and from the disk. As sequential READ requests are mode to
a blocked disk file, the blocks are read from the disk into
blocking buffers as necessary, and the data records ore
transmitted to the user's input buffer.

Blocked organization is specified for a file when the file
is defined. A file specified by the user as blocked, but
having a record size greater thon 128 words, will be given
unblocked organization.

UNBLOCKED FILES

Unblocked files contain fixed length records. Eoch record
begins on a sector boundary and requires some integral
number of sectors that is the smallest possible integral num~
ber that can contain the record.

COMPRESSED FILES

Since many blanks occur in typical programming-lenguage
source code compression of EBCDIC data in disk files is
accomplished by the removal of blank characters. Com-
pressed files are blocked into 256 word blocks on the disk
ond the records are of variable length. No record crosses

a block boundary. Special codes, imbedded in the com-

pressed records, allow for proper decompression,

DISK ACCESS METHODS

SEQUENTIAL ACCESS

The sequentiol access method provides record-by-record
access to the file in the same way that a data file on mag-
netic tape is accessed. A sequential access READ/WRITE
request results in the next record in sequence being read or
written. Sequential access con be used on blocked, un-
blocked, or compressed files.

DIRECT ACCESS

In the direct access method, the user furnishes the relative

granule number of the start of the READ/WRITE request ond

the number of bytes to be transferred. The user is respon-

sible for the organization of the file, including discrimina-

tion of logical records, maintenance of akey structure within
the file, etc. Addressing files by granules allows the direct
access method to be independent of the disk sector size.

Graonule size is specified by the user at file creation. Each
granule begins on a sector boundary.

The user is not restricted to 1/0 operations whose length is
less than or equal to the gronule size. For requests of

length greater than granule size, the 1/0 system transfers
the requested number of bytes to or from the disk starting
with the granule specified. An entire area may be treated
as a single direct access file by using a file nome of 0.

DEVICE ACCESS

Inthe device access method, the user reads or writes through
a DCB which is assigned directly to a disk as a device.
The assignment may be done with a standard ASSIGN com-
mand or with the DEVICE Set Index function. The "key"
parameter, which must be present in the READ/WRITE FPT,
is treated as a sector number which is relative to the abso-
lute start of the disk. This method aliows direct (random)
access fo any sector on the disk (except the flawed track
pool). All other parameters in the READ/WRITE FPT are
treated as they would be for any READ/WRITE call.

In this method, the disk may have arecs defined on it, but
having areas is not a requirement, Note that no error
checking is provided which would prevent usersof this method

from interfering with other users who may be accessing the
disk,

DISK PACK FILES

Although files on disk packs ore logically and functionally
identical to files on fixed-head disks, the physical char-
acteristics of disk packs require that the 1/0O be treated
differently in certain cases.

Initiclly, all transfers to or from e disk pack file are ot-
tempted as one complete 1/0 operation. If the hardware
signals that the transfer encountered o flawed track, then the
single 1/0 transfer will be broken into several 1/0 transfers.
Each of these will be confined to no more than one track,
thus al lowing processing of alternate tracks for flawed-tracks.
All such data transfers will be treated as follows:

1. The byte count will be truncated to end on the first
track boundary.

2. The data transfer to the track boundary will be done
and any flawed=track processing will be performed.

3. If the residue of the operation does not cross another
track boundary, the operation will be completed o=
originally requested; otherwise, steps 1 ond 2 will be
repeated until the residue does not cause transfer over
a track boundary.

4, If a flawed track is encountered; the disk pack error-
recovery routine will read the heoder of the flawed
track to determine its alternate. The data transfer will
then be performed with the assigned alternate track.

If the initial transfer encounters a cylinder boundary,
the 1/0 request is modified fo account for the dota
aiready transferred and the 1/O operation is continued
on the next cylinder,

File Organization/Disk Access Methods/Disk Pack Files 45

EXTENSIBLE FILES

When o permanent disk file is ALLOTed as extensible (see
ALLOT cdll and :ALLOT RADEDIT command), an sxtension
to the file will be outomatically allocated when an end-
of-file condition is detected during a WRITE operation to
the file. The WRITE request resumes using the new extent.

The extents will have the size specified when the file was
ALLOTed with one exception. A direct access WRITE to
on extensible file will cause an extent to be allocated
which is large enough to contain the record but no smaller
than the specified extent size. The user moy request, how-
ever, that the extents be limited to the specified extent
size by use of the FIXoption on the :ALLOT RADEDIT com-
mand or by setting the F5 parameter in the ALLOT CAL.

If an end-of-data (EOD) is detected when reading an ex~
tensible file, a switch to the next extent in sequence occurs
ond the READ continues using the newly selected extent,

When a READ/WRITE is requested with no-wait, intermediate
file selection or allocation is done with wait., However,
the actual reading or writingof the data record is done with~
out waiting.

1/0 QUEUEING

The I/O system provides for queueing of all requests to 1/0
devices. That is, any 1/0O request (READ, WRITE, REW,
10EX, etc.) requiring o device to be accessed results in the
request for the specific access being queved.

Device requests are queued on a controller basis (one queue
per controller), and they are queued in order by priority of
the task moking the request. For example, a READ request
to a card reoder will be placed in the queue for the speci-~
fied card reader controller, and its position in the queue is
determined by the priority of the requesting task and the
relative priorities of the requests already in the queue. Re-
quests for o designated device from a specified priority level
are queuved by order of occurrence. The queues are chains
of entries representing requests for actual 1/0 operations on
devices. There is a single pool of free entries for all de-
vices, and these entries are removed from the pool and linked
to the controlier queues as needed. The queue entry is re-
turned to the free entry pool when o queued request is
completed.

By using assembly options, the system may include queuving

routines that optimize /O transfers to disk packs and fixed-
head disks. In the case of disk packs, the optimization

minimizes arm motion when there are more than two requests
in the queue, In the cose of fixed-head disks, the optim=-
ization minimizes rotational latency when there are more

than two requests in the queue.

At System Generation, the user may specify the maximum
number of entries to be used for background requests to
ensure that the background does not tie up all the queve

45 Queuing/Cleanup and Start/Sharing DCBs Among Tasks

entries, thus causing foreground requests to wait. Whenever
a request is made and the free entry pool is empty (all queue
entries in use), the request is made to wait until an entry is
freed,

1/0 CLEANUP AND 1/0 START

1/0 Cleanupis the dato processing performed between com-
pletion of the actual data transmission (signaled by occur-
rence of the |/Ointerrupt)and the completion of the request.
It includes such functions os error testing, setup for error
recovery, posting of completion status in the ECB, setting
of indicators in the DCT, dequeuing the completed request,
etc,

1/0 Start is the operation of storting a device for the next
request.

Under the CP-R 1/0 system, CPU time may be taken from a
task to perform data processing for lower priorify tasks. 1/0
Cleanup and 1/0 Start functions are performed at the vori-
ous times and priority levels given below:

Depending upon SYSGEN options, 1/O Cleanup may be
done in one of three ways:

1. 1/0O Cleanup may be done at the 1/O interrupt level.
This assures fast 1/O service but may delay serviceto
real-time tosks that are connected below the I/Ointer-
tupt level.

2. 1/0 Cleanup may be deferred to a specified exteral
interrupt level, This allows fast response to real-time
tasks running at levels higher than the deferred level
yet, giving maximum I/O service to lower priority tasks.

3. 1/OCleanup may bedeferred fo user or CP-R dispatcher
levels at all times. In this case, 1/0 Cleanup is done

upon:
a. Entry to any CP-R dispatcher (all channels),

b. For any1/Oservice performed with WAIT (only for
requested channel!), or

c. For any 1/O Start request (only for requested
channel).

1/O Start is done either at the time the 1/0 request is mode
or following 1/0 Cleanup when there ore still 1/0 requests
pending for that channel, -

-

SHARING DCBs AMONG TASKS

DCBs can be shored among several primary tasks within o
given load module subject to the restriction that no task can
make a Type I request on a DCB that is busy with another
Type 1 request.

DCBs explicitly referenced by the user are ollocated ond
created by the user either in the source code (for assembly
longuage), the compiler, or the Overlay Loaoder. This
means that each program has a private copy of all DCBs
explicitly referenced, gnd no DCBs are shared among pro-
grems. The user program has the responsibility for coordinat-
ing the Open and Close functions for DCBs shared among
primary tasks within @ program. An Open request results in
the DCB being opened if it is not already open. A Close
request causes the DCB to be closed if it is not already
closed. No attempt is made to balance Open and Close
requests for a DCB to determine which Close request should
actually cause the DCB to be closed.

SHARING |/0 DEVICES AMONG TASKS

Any number of tasks within a given program can share any
device by sharing o DCB assigned to the given device. For
sequential type devices (i.e., cord reader, cord punch,
line printer, magnetic tape, responsibility for positioning
and/or determining the position of the device is left to the
user. No ottempt is mode to analyze a request on a DCB to
determine which task has made the request.

Sequential output devices (i.e., cord punch, line printer,
magnetic tape), can be shared by tasks (possibly in different
programs) that use different DCBs. The sharing of output
devices by different programs using different DCBs could be
used for logging error conditions or alarms,

Sharing of sequential input devices (i. e., card reader, mog-
netic tape)shouldbe accomplished throughreal-time requests
on a single DCB. For example, o background user who
wishes to use double buffering on a card reader con do so by
using two real-time Reod requests with two different FPTs.

Random access devices such os disks can be shared, using
direct access, by tasks within different programs using vori~-
ous DCBs. The sharing can be performed without restriction
other than those restrictions nomally imposed on tasks
sharing a DCB,

As DCBs are opened and closed, o count of the DCBs that are
open ond assigned to a device is kept. This count is incre-
mented for every open requeston a DCBassigned to the par-
ticular device, and is decremented for each Close request.

SHARING DISK FILES AMONG TASKS AND J0BS

Any number of primary tasks within a load module can share
a disk file by sharing o DCB assigned to the file (subject to
the conditions placed on tasks sharing DCBs discussed pre-
viously). A disk file shared in this monner con be accessed
either sequentially or directly. Input/output requests are
allowed.

Qny number of primary tasks within a load module and any
number of load modules within o job can share a disk file
using different DCBs with the restriction that no sequential
input requests can be dllowedona file shored in this manner.
A count of the numberof DCBs opened and assigned to a disk

file is kept for sach file. If the count is greater than 1, no
sequential input from the file is ollowed. The user programs
have the responsibility of coordinating accesses to disk files
shared in this monner.

Disk files con be shared by tasks in different jobs if certain
procedures are followed. The file is made sharable by
essigning on operational label fo the file using the STDLB
key-in., Executing a STDLB call from a task running in the
CP-R job will accomplish the some thing. The file should
not have been open at the time of the STDLB request. Each
active job will now have the operational labe! asignedto
the file (if the operationol label asignment was not pre-
viously changed). Access to the file is done through a DCB
assigned to the operational label, Access will be denied to
o blocked or compressed format file which currently has a
blocking buffer tied to it if it is determined that the block-
ing buffer is not in the caller's context. The restrictions that
apply to the sharing of a file within a job also apply to the
sharing of a file by tasks in different jobs.

An Open request on a DCB assigned to a disk file results in
opening of the file ifit is not already open, A Close request
on such a DCB results in closing of the file only if the "Open
DCB Count" for the fileis 1 and no operational labels in any
job aore assigned fo the file.

1/0 END ACTION

Primary tasks may use 1/O end-action, Three types of end-
action are possible,

1. The user provides an end-action address in the FPT. A
transfer to this address will be made following the
occurrence of an 1/0 interrupt that signals completion
of the dato transfer. This end—action transfer is made
by executing.

BAL, 11 end-oction oddress

with the CPU in master mode, the 1/0 cleanup level
active, and registers 5 through 9 loaded as follows:

5 AlO status

6 Upper halfword of T1O status, right-
justified in register

7 Device type (DCT) index

8,9 TDV status (doubleword)
Return from the end-action routing must be made by

B8 N
It should be noted that since end-action may be per-
formed with the 1/0 cleanup level high, all tasks whose

priority islower than that of the /O cleanup level are
effectively disabled for the duration of the end-action,

Sharing 1/0 Devices Among Tasks/Sharing Disk Files Among Tasks and Jobs/1/O End Action 47

Since the end-action user can seriously degrade interrupt
response for lower priority tasks, it Is strongly recom-
mended that this type of end-action not be used for
applications where other techniques are satisfactory.

2. The user FPT contains either an interrupt number or
interrupt label specifying o system interrupt. The sys-
tem interrupt is triggered upon occurrence of an 1/0
interrupt that signals completion of the request (this
interrupt will be triggered before the 1/0 interrupt is
cleared). The task connected with the specified inter-
rupt then performs the end-action function at the proper
priority level. The user is responsible for connecting
the interrupt and ensuring that it is armed and enabled.

The 1/0 system sets a flag in the TCB to indicate that
the trigger has been performed. The EXIT routine
interrogates this flog before performing the EXIT for
centrally connected tasks. If the flag is set, the occur:
rence of the interrupt (previously lost by the triggering
of an active interrupt) will be simulated. If more than
one 1/0 interrupt can occur while a task is active (or
prior to such o task becoming active), the user is re-
sponsible for checking all possible devices from which
an interrupt may have occurred. (The flog bit in the
TCB indicates one or more interrupt attempts.) Directly
connected tasks using this type of end-action must as-
sume the responsibility for solving problems of this type
since there is no TCB in which a flag bit can be set.

3. The user FPT contains the address of a location to con-
tain the AlO status following the occurrence of an 1/0
interrupt. The user should initialize the signal loca-~
tion to zero before executing the 1/O call. This type
of end-action is useful when multiple-device 1/O oper-
ations are being performed and the slower 1/O is
controlled by end-action types 1 and 2,

Note that no end-oction is taken for requests on a
blocked or compressed disk file.

RESERVING 1/0 DEVICES FOR FOREGROUND USE

1/O devices can be reserved for exclusive use of the fore-
ground program system through SYSGEN input, operator
key~in, or through a system call from o foreground program.
Reservation can be made either for a specific device, for
all devices on a controller, or for all devices associated
with o given JOP. When a device is reserved, it is speci-
fied thot either all foreground requests will be allowed or
no requests witl be allowed.

Device reservation results in all background requests to the
device being held in abeyance until the device is released
for background use. The background user progrom is un-
aware that execution is suspended.

A count is kept of the number of reservations (STOPIO re-
quests) of each type (either all foreground 1/0 allowed or

no 1/0 allowed) for each device. As devices ore reserved,

proper count is incremented; and as they are released,
the count is decremented. A value greater than zero indi-
cates that the device is reserved. The user must balance
each STOPIO request with a STARTIO request so the system
can maintain order.

When 1/0 requests are received by the system, the requests
will be queved. Any request queved but currently not al-
lowed will not be started.

The foreground user can specify in a STOPIO request that
the in-process operation on the specified device be aborted
through execution of on HIO.

DEVICE PREEMPTION

A user may preempt a device (receive I/Ointerrupt control)
with the STOP ALL SYSTEM 1/O or DEACTIVATE 1/0O sys-
tem calls by specifying the end-oction porameter on the
call. All succeeding 1/O interrupts couse the specified
end-action to occur. A device may olso be preempted by
dedicating it to IOEX ot SYSGEN or by use of DEDICATE
yyndd, X key-in. Note that in the latter two cases, the
monitor hondles the interrupt.

DIRECT 1/0 EXECUTION (IOEX]

CP-R provides primary tasks with the capability of pro-
gromming 1/O devices by executing TIO, TDV, HIO,
and SIO instructions with user supplied 10P command
doub lewords.

An S10 request will be placed in the 1/O queve if the
specified device is not preempted. At return from the call,
the condition codes and status are set to simulate asuccess-
ful SIO instruction. True hardware status for the 1/0 re-
quest may be obtained by the user by specifying BAL type
end-action on the S1O request, If the SIO request cannot
be queued for any reason, the condition codes and status
are set to simulate an SIO failure. Note that queved IOEX
requests must couse only one 1/O interrupt to occur during
the execution of the channel progrom.

If the device was preempted at the time of the request, the
SIO instruction is executed ond true hardware status and
condition codes ore returned to the user., If end-action is
specified on the request, device preemption end-action is

overridden, a

An H1Orequest will use monitor routines to stopl/Oactivity
on the device if it is not preempted. At return from the
call, the condition codes and staotus are set fo simulate a
sccessful HIO instruction. If the device was preempted
ot the time of the request, the HIO instruction is executed
ond frve hardwore status and condition codes are returned
to the user:

48 Reserving 1/O Devices for Foreground Use/Device Preemption/Direct 1/0 Execution (IOEX)

g

-

-

TIO and TDV imstructions ore always executed and true
hardware status and condition codes are retumed to the
user,

KEYBOARD-PRINTER EDITED 1/0

Data transfers involving a keyboard-printer (TYndd) are
nommally subject to editing. On output, this means that
each record is automatically followed by @ € and ©, and
if VFC is set, the first character of the line is omitted. On
input, editing is more complicated. First, before the input
is requested, a prompt choracter is output. The prompt char=-
acter is obtained from the Job Control Block (JCB) of the
colling task's job, unless it is specified in the READ call.
When the record has been read, it is scanned. Each time
a "f£" is encountered, it and the prior choracterare deleted.
If the record ends with an EOM, it is discarded and reread.
Trailing carriage retums or line feeds are deleted, and the
record is extended with blanks to the requested byte length,

The prompt character in the JCB defaults to no prompt. It
con be reset using the PC (Prompt Character) service call.

Editing is suppressed by setting the DRC flag in the DCB.

LOGICAL DEVICES

Provision is mode in SYSGEN to include logical devices.
These are pseudo-devices which form o logical connection
between read and write or write file mark1l/O requests, They
ore SYSGENedas if they were real devices (including ficti-
tious device oddresses), ond may be used as any other 1/0O
devices,

Reod ond write requests are entered into the 1/0 queue nor-
mally. When the logical device finds o match between o
read and o write request, the data transfer is made directly
from the write buffer to the recd buffer. Requests are handled
on o first in, first out basis within priority and otherwise in
order by priority. Actual record sizes are posted s usual,
Write file maork requests result in an EOF TYC and ab-
nomal code being posted for the read request.

Logical devices supply the capability of communicating be-
tween tasks via normal reod/write services, It also provides
the copability of intercepting or monitoring o dato stream,

The user should be aware that 1/0 buffers are locked in main
memory during any 1/O operation, ond that where very large
buffers or very mony outstanding 1/0 requests are used, this
may result in o deadlock. Thisis particularly true of logical
device requests which must be satisfied by another 1/0 re-
quest ond not by independent action by a peripheral. Simi-
larly 1/0 queue requests may be tied up ond result in a

deodlock condition,

Logical device requests are not subject to 1/0 timeouts. If
desired, the user may supply a time interval parometer on
the service request (P13). This will cance! the requestafter
the specified time period and post o FPT error code of X'67'.

OPERATIONAL LABELS

Operational Iabels are used to lend flexibility in the assign-
ment of DCBs to peripheral devices. Operationa! labels are
logical 1/0 media whose relation to a device or file can be
controlled ot several levels.

Operationa! labels are assigned to devices or disk files.
Each operational label has a permonent assignment and an
assignment in each active job. When a job is created, its
operational label table is derived from the permanent oper-
ational labe! table, Assignment of operational labels to
devices or disk files is mode in the following ways.

1. At System Generation, permanent assignments are made
andremain in force until chonged through STDLB key=~in.
The original system assignments are reinstated whenever
the system is ogain booted and initiclized,

2, TheSTDLBkey-in can be used by the operator to change
the system assignment of an operational ldbel, which
will result in a corresponding change in the operational
label table for each active job, unless the assignment
was previously changed within the job with a STDLB call.

3. The ISTDLB control command con be inserted by the
user to change the assignment of on operational label
in the current background job. This change is in effect
until the next 1JOB command is encountered.

4. The STDLB service call moy be used to change the c=s-
signment of an operational label in the wser's job, Op-
erational label assignments in other jobs are not affected
unless the call originated from the CP-R job. In this
case, the call has the some effect as an STDLB key-in,

At System Generation, the user may specify any number of
optional operational labels with the provision that the op-
tional labels be two choracters in length. An entry is built
in the operational label table for each optional oplabel,
ond each entry requires four bytes of system residence.

DATA CONTROL BLOCKS (DCBs)

-t

DCB CREATION

The Overlay Loader creates the DCBs for FORTRAN programs

that reference the standard FORTRAN operational labels 101

through 106, and 108 for theirl/Orequests. For other labels,
the user must create DCBs using IASSIGN control commands

ond machine longuage subroutines.

Keyboard-Printer Edited 1/O/Logical Devices/Operational Labels/Data Control Blocks (DCBs) 49

DCBs for essembly languoge programs are allocated and
defined in the following ways:

1. User Created DCBs: The user may create his DCBs in
the source code, The parameters defined at source time
may be overridden by !ASSIGN control commands if
the user follows the convention of defining the nomeof
a DCB ond beginning the nome with F:.

Waming: DCBs will not receive ony memory protec-
tion, ond assembly languoge users should exercise ex-
treme core to prevent occidental alteration.

2. looder Created DCBs: At the conclusion of the object
module load and the library search and load, the Looder
creates DCBs for any unsatisfied REFs beginning with M:
or F:. For REFs to system DCBs, defined in Table 12, o
copy of the standard DCB is included in the root portion
of the load module. This DCB contains standord system
porometers, including stondard assignment to a system
operational lobel. For example, M:LO is assigned to
operational label LO. User DCBs (F:) are included in
the lood module but their parameters ore left blank. The
background user must define the parameters for F: DCBs
through Overlay loader control commonds at load time
or IASSIGN at run~time. Definition and assignment of
F:DCBs in foreground programs should be made through
Overlay looder control commands.

3. 1ASSIGN Command Created DCBs: JASSIGN control
commands can create DCBs in oddition to defining or
redefining parameters in existing DCBs. This DCB creo-
tion focility enables FORTRAN IV and FORTRAN [V-H
programs to perform 1/O using voriables as operational
labels. At run-time, the FORTRANprogrom eveoluotes
such variables, converts the varicble value to o DCB
nome ond locates the DCB. For example, a FORTRAN
variable with value 101 would result in an 1/0O oper-
otion using DCB F:101. The DCB must have been creo-
ted in an assembly language subroutine or through on
JASSIGN control commond.

DCB ASSIGNMENT

Most of the fields of a DCB canbe modified at any stage in
the creation and use of aprogram. Values moy be assembied
into user-creoted DCBs. They can be modified when the
program is linked, using the Overlay Loader :ASSIGN com-
mand. For background programs, DCBs moy be altered by
the JCP IASSIGN command when the progrom is loaded for
execution. During execution, DCBs may be changed by
Device Mode services. Those fields not subject fo these
means of modjfication are maintained by the monitor, and
should not be changed by user code.

50 Dato Control Blocks (DCBs)

Table 12, System DCis

Op Label or Disk .
DCB Name File Assignment Comments
M:C C The first 12 DCBs
. are assigned to
M:0C . oC the standard op-
M:LO Lo . erational igbels,
M:LL LL
m:DO DO
MCO co
M:BO BO
MLl Cl
M:SI S1
M:BI BI
M:SO SO '
M:PL PL
MX(ISis9) Xi.BT DCBs for Back=-
ground Temp
scratch file,
M:GO GO.BT DCB to write on
GO file,
M:0V OV. 8T Output DCB for
Overlay Loader,
M:SLt Appropriate Input DCB for
program file Segment Looder,

'The M:SL DCB does not have to be referenced by a
program using overlays, since this DCB is outomati=-
cally furnished by the Overlay Looder for any program
with overloy segments,

DCB FORMAT

The format for a Data Control Biock is given below:

word 0
%005 /318190 (208
-— — A
1818 0 (¢i0—0[2lo—olt|e(2] /[el eo| ASN
T 2 371a 5 o TTk & 3 1I112 1] 14 t5The L, H 24 25 4t S H2E 25 3. 0
word |

4]
NRT o——0 if L TYPE DEV/OPLE/RFILE
(R

T F 316 3 8 TTF V0B T334 [T uz.ihr':sr;:;v

word 2
0 0 TYC BUF
V2 JTe F e TTE ® 1% 012710 14 15T e 17 I F I 1) 28 26 T2 M
word 3
RSZ ERA
T IR SR B IR W T Y F I LI G LTI 3 A5 e

word 4

2 4 3 6 1 12 M i5Te 17 M) 1

word 5 (optional)

ARS ABA

NO

NI N2 N3

¢ 1 2 Jla

word 6 (optional)

ECIRAUNR RO R BN AL I O I <1t T T R AL

N4

N5 Né N7

T T e T T T R R R R T WK T B SR SRR R R T
word 7 (optional)

rinteto ol
BRER] ﬁ}"]. ¥ ORI 1] 1451w 3/
(optional)
0 0 AREA
Tt T T T T T T R N e T AR T ORI R R NIRRT
(optional)
A0 Al A2 A3
T s T T VT R T S U B e T AN ERNE RSN B
(optional)
A4 A5 Aéb A7
7 31¢ 5 & T ¢ 017 B eislie W AIX2 2D 88 % DBD DI

where

Word 0

TTL

specifies the tota! length set aside for the DCB.
It must be five or greater (although there is cur-

rently no way to use any space past eleven words).
It need not all be used.

TTL should be set when the DCB space is reserved.
No system services modify it.

OPEN is the DCB open indicator. It must be set to

zero before the DCB is opened. The 1/0 system
sets the indicator to 1 when the DCB is opened.

MOD is the mode flag (0 for EBCDIC mode; 1 for

binary). This flag has meaning only for 1/0 re-
quests to COC lines, 7-track mognetic tape, card
punch, orcard reader, For requests to read a card
reader, Mode flog O couses o Read Automatic.t
Input from a card reader designated as the C device
is always performed in automatic mode (mode flag
isignored). For COC lines MOD=1 and DRC =1

implies tronsparency (no EBCDIC conversion, no
N/L, or other line or timing control characters).

'See Chopter 3, Xerox Sigma Card Recder (Models 7120/
7122/7140)/Reference Manua!, 90 09 70,

BUSY is the DCBbusy indicator that is set and main-
tained by the 1/0 system to indicate that a Type |
request using the DCB is in progress. Any Type |
request using a DCB that is made when the DCB s
busy will result in on emor,

ASC is the indication of ASCIl mode tape operation
for mognetic tape drives having program-controlled
ASCII translation (0 indicates no translation; 1 in-
dicates translation). This flag is ignored for other
devices.

DRC is the indication of direct record control for
keyboard-printer operation (Oindicates edited rec~
ord tronsfers; 1 indicates direct record transfers).
Keyboard/printer edited transfers ore described
earilier in this chapter. For transfers involving
other devices, the flag is ignored. (See MOD de-~
scription for COC line transparency.)

D/P indicates packed binary mode for 7-track tapes
in conjunction with MOD (above) beingset (0 in=
dicates unpacked; 1 indicates packed if MOD is
also 1). It also is used to indicate density selec-
tion on a write at lood-point to a magnetic tope
drive with program=-controlied density (0 indicates
800 bpi; 1 indicates 1600 bpi). On other devices
or under other circumstances than described, the
flag is ignored.

VFC is the vertical format indicator (0 indicates no
format control; 1 indicates format control)specify-~
ing whether or not the first choracter of an output
record is to be used to control vertical positioning
for output to a line printer or keyboard/printer.
Under format control, the line printer is given a
“print with format"” order. The keyboard/printer
performs a preliminary new line (regardless of the
format character)and outputs the record beginning
with the second byte. The first byte is output as
data on all other devices, VFC has no effect on
other 1/O operations. The format control codes are
itemized in Table 13,

DAN indicates whether adisk area name is provided.
If ASN is not 1, DAN is not used. If ASN =1 and
DAN =0, the disk area index will be obtained from
the TYPE field. If ASN=1, DAN=1, and P1 =0,
the disk orea is unspecified (OPEN may provide a
default). IfASN =1, DAN=1, ond Pi =1, the
area name will be obtained from the AREA field.

DON indicates whether a device oroperational labe!
name is provided, If ASN is not 3, DON is no!
uvsed, If ASN=3 and DON =0, the device or
operational labe! index will be obtained from the
DEV/OPLB/RFILE field. 1f ASN =3 and DON =1,
the device or operational label name will be ob-
tained from the NO=-N7 fields, as described later.

BTD is the byte displacement specifying at which
byte (0=3) in o buffer the data begins.

Data Control Blocks (DCBs) 51

ASN is the assignment type indicator (0 means null;

1 means disk file; 2 means not used; 3 means de-
vice or system operational label),

Table 13, Line Printer Format Control Codes

Code

(hexadecimal) Action

Co0, 40 Spoce no additional lines.

60, EO Inhibit space ofter printing.

Cil Space 1 additional line before
printing.

Cc2 Space 2 odditional lines before
printing.

c3 Spoce 3 additional lines before
printing.

CF Space 15 additiona! lines before
printing.

FO Skip to Channe! 0 (bottom of page)
before printing.

Fl Skip to Channel 1 (top of page)
before printing.

F2 Skip to Channe! 2 before printing.

FF Skip to Channel 15 before
printing.

Word 1
NRT is the number of recovery tries to be allowed

before outputting a device error message.

DEVF is an indicator specifying whether the device

assignment (when ASN has volue 3) in force is
directly to o physical device or indirectly through
on operational labe! (1 means direct; 0 means in-
direct), See TYPE and DEV/OPLB RFILE discus-

sion below,

is on indicator specifying whether the assigned
device is o line printer or keyboard/printer. The
indicator is set by the system at OPEN time,

TYPE is a field indicating the type of device that

is directly assigned if ASN has volue 3 ond DEVF
has value 1. In this case, TYPE is set when the
DCB is opened, regardless of its prior content,

Value Device
0 NO (10EX)
1 TYor LN
4 CR
5 ce
é Lp
7 DC

52 Data Control Blocks (DCBs)

Volue Device
8 1)
9 ral
10 CP (Low Cost)
1 LP (Low Cost)
12 DpP
13 PL
4 DpP
15 LpP
16 141
18 XX (special)
19 LD (logical device)

If ASN hos value 1, TYPE specifies the oreo that
contains the disk file, If DAN is 0, TYPE must be
set before opening. If DAN is 1, TYPE is set by
the OPEN service.

Value Area

SP
FP
Bp
BT
XA

TR WN—=O

]user defined oreas

(Value 5 refers to area CK, which is reserved for
system use.)

DEV/OPLB/RFILE contains one of three:

1.

The DCT index of the mssigned device when the
assignment is to a device (ASN equals 3 and DEVF
equals 1). This must be set before opening if DON I
is 0. It is set by OPEN if DONis 1,

The operational label table index of the assigned
operational label when the assignment is fo an op-
erational label (ASN equals 3 and DEVF equals 0).
This must be set before opening if DON is 0. 1t is
set by OPEN if DON is 1. The index values for
standard system operational labels are

Lobel Index Value

C 1

oC 2

LO 3 -
LL 4 -
DO 5

co 6

80 7

Ci 8

Y| 9

Bl 10

SO n

Optional operation labels may be provided by the
user, or in connection with certain SYSGEN op-

. tions. The user is responsible for determining the
index values for his optional operational labels
when specifying an operational label by index.
These values ore a function of the order in which
the optional operationa! labels ore specified at
System Generation.

The index value for the devices are also a function
of the order in which the devices are specified at
System Generation,

3. When o DCB is assigned to a disk file (ASN
equals 1), this field contains the index to the RFT
(RAD File Table). This value is set when the DCB
is opened. The RFT entry is created at OPEN if
an entry does not already exist for the file.

Word 2

TYC is an indicator showing the type of completion
for an I/0 operation. TYC is set by the 1/0 sys-
tem at the completion of each request that uses
the DCB in o Type I mode (see discussion of Read
and Write system calls below). The completion
type codes are listed in Appendix N.

BUF is the address of the user buffer for requests
whose FPTs do not include a buffer address.

Word 3

RSZ is the default record size in bytes (1< RSZ
£32,767). The parometer is usedasthe byte count
for Read/Write requests that do not include a byte
count,

ERA is the address of the user's routine that handles
errors associated with insufficient or conflicting
information in the DCB or FPT. Zeros in this field
are used to indicate that no user error routine ex-
ists (see discussion of error and abnormal returns

below).

Word 4

ARS is the actual record size in bytes. The param-
efer is set by the I/O system when a request is
. completed. It is set in the DCB for Type I re-
quests only. For 1/O requests that will result in
o data transfer of more than 32,767 bytes, o TYPEII
request should be usedsince only 15bitsare avail-
oble for posting ARS in Type I requests,

ABA is the address of the user's routine that handles
abnormal conditions associated with insufficient or
conflicting information in the DCB or FPT, Zeros
are used to indicate that no user abnormal routine
exists (see discussion of error and abnormal returns

below).

Information past word 4 is usedonly by the OPEN and XSSIGN ‘
CALs, While a DCB is open, all information of value to
CP=R is in words 0-4, o

Words 5 and 6:

1f ASN=1and TTL 2 7, words 5 ond 6 will be accessed
by the OPENservice for an 8=byte file nameor numeric
zero, Additionally, if TTL=6, four bytes of file name
or zero will be obtained from word 5 only.

If ASN =3, DEVF =0, ond DON =1, word 5 will be
accessed by the OPEN service for an operational label
in the second halfword. Word 6 need not be present,

If ASN =3, DEVF =1, and DON =1, words 5 and &
will be accessed by the OPEN service for a device name
in NO=-N4, with blanks in N5=-N7, °

Word 7:

If word 7is used, words 5 and 6 must be present even if
they are not used.

(4] is a presence bit for the word containing AREA
(P1 =0 if not present; P1 =1 if present).

P2 is a presence bit for the word containing AO-A3
(P2 =0 if not present; P2 = 1 if present),

P3 is a presence bit for the word containing A4-A7
(P3 =0 if not present; P3 = 1 if present). However,
if P2 is zero, A4-A7 will be ignored, regardless of
the valuve of P3.

Words selected by the presence bits must follow word 7
in the indicated order. Words not selected must be
omitted,

variable-position optional words:

AREA is a system or user disk area name. This po-
rameter is used only during the OPEN service, s
described in the paragraph on the DAN field. If it
is omitted or zero when it is needed, OPEN pro-
vides o default.

-l

AO-A7 s on accountname, filledto eight characters
with trailing blanks. The word containing A4-A7
may be omitted if it is all blanks. This parameter
is accessed only during the OPEN service when

- ASN=1 and the file name is not numeric zero. If
ASN=1 ond the file name is nonzero, but A0-A7
are omitted, numeric zero, or all blanks, OPEN
provides a default account name.

Data Control Blocks (DCBs) 53

ERROR AND ABNORMAL CONDITIONS

Certain error codes are returned to the user's error or ob-
norma! return routines upon occurrence of verious condi-
tions. At entrytothese routines, the error code is contained
in byte 0 of register 10, the DCB address is contained in
the address field (low-order 17 bits) of register 10, and
the address of the location following the CAL1 is contained
in register 8. The previous contents of registers 8 ond 10
are lost.

Foreground users must provide error ond abnormal returns on
all 1/0O requests with wait and on ol! CHECK requests. If
background users omit the error and obnormal addresses, the
system will toke action as detailed below. The error codes
ore defined in Appendix N.

1/0 SYSTEM CALLS

1/0 system calls may be mode only when o user has been
given control under the following circumstances:

1. The background or foreground program loader has trans-
ferred contro! to the starting address of the user's

progrom.

2. The user's centrally connected task has been given
control upon the occurrence of its associated interrupt.

Warning: Do not perform 1/O system calls from o task
connected to an interrupt of higher priority
than the 1/0 interrupt.

In all of the FPT formats which follow, an asterisk in

bit 0 indicates thot indirect addressing is permitted, That
is, if bit 0 contains a 1, bits 15 through 31 contain the
address of the parameter rather than the parameter itself,

Whenever a return is made to an abnormal or error address,
the error or abnormal code will be in byte 0 of register 10
and the address of the location following the call will be

in register 8.

Calls for which F3 (wait indicator) is not available are
either immediate or synchronous. That is, control will
never be retumed to the caller until the service has been
completed (see Appendix 1 for more detailed informo-
tion). Primary task users should recognize that during
any wait for completion of the service all lower priority
tasks are blocked,

If an error is detected in the coll ond no error address is
avoilable, the situation will be handled similar to ¢ trap
and the user will be aborted unless he has elected to do
his own trap handling.

54 Error and Abnormal Conditions/1/0 System Calls

OPEN A FILE

OPEN The OPEN system call opens the data file if it
is not already open. If the oddressed DCB is assigned to o
device (directly or through an operational label), a count is
kept of the number of open DCBs assigned to the device.

If the DCB is assigned to a disk file, on entry is built in the
RFT (RAD File Table) if one does not already exist and the
index of the entry is placed in the DEV/OPLB/RFILE field of
the DCB. A count of open DCBs assigned to the disk file is
olso maintained. The user may specify a buffer to be used
in the File Directory search but this is not mandatory. The
OPEN function will use available blocking buffers if such a
buffer is not given.

When a DCB assigned to a file is opened, the following de-
foults for area ond account nomes apply:

1. If neither account name nor area name is specified, the
calling tesk's account is used, and the area may be any
public area. This provides the simplest specification,
ond the user need not be concerned with the possibility
of name conflicts other than within his own account,

2, If the account name is specified, but the area nome is
not, the file may be in any public area. This provides
for area~independent file specification.

3. If the area name is specified but the account name is
not, the system account will be used, This case provides
compatibility for code written before the oddition of
file account names.

4, If the account name is all blanks, or numeric zero, itis
treated as unspecified.

5. 1f the disk area name is numeric zero, it is treated as
unspecified.

The error and abnormal addresses in the DCB may be set or
chonged ot OPEN. The error and abnormal oddresses will
be copied from the FPT if present. The OPEN function causes
the specified DCBs file—open indicator (OPEN)to be set to 1.

If the specified DCB is assigned to an operational label and
the operational label, in turn, is assigned to a 7T device,
PACK and BIN are set to 1.

If o DCB is already open (OPEN = 1) for device-assigned
DCBs when the OPEN function is colled, an abnorma! con-
dition is signaled (see Appendix N). The device indicator
(DEV/OPLB/RFILE) of the DCB is checked for validity. If
it references a valid operational labe! or physic8! device,
the DCB is marked open; if the device indicator is invalid,
the DCB is not marked open and an abnormal condition is
signaled (see below for the OPEN call format).

For DCBs assigned (directly or through oplabels) to line

printers or keyboard/printers, the L indicator in the DCB
is set to 1.

If o DED DPndd, R key=in is in effect, the file will not be
opened, A DCB abnormal condition with code X'2F' exists.

If the DCB is ossigned to a device that has been declared
to be nonsharable, the user will be given exclusive use of

the device providing that it is currently availoble. If the

device is already in use in onother job, the user's DCB will
not be OPENed and on error condition will be retumed.

CLOSE A FILE

CLOSE The CLOSE function closes a DCB by setting
the DCB open indicator (OPEN) to 0, which may result in
closing the assigned data file on a device or disk file. The
CLOSE function decrements the "open DCB count” in the
proper DCT or RFT entry ond if the count becomes zero,
the data file is closed.

If the data file is to be closed and is o disk file opened for
output, the directory entry for the disk file is updated with
the information from the RFT entry and the entry is deleted
from the RFT table, If the file is extensible, all extents
post the one that contains the last record are deleted,

If the data file is to be closed and is a disk file opened for
input only, the entry is deleted from the RFT table,

If the file is on a 'non-system' disk pack, a DED DPndd,R
key-in has been made, ond thisis the last file to be closed,
the system will output the message

11DPndd IDLE

If the DCB is assigned to a device that hos been declared to
be nonsharable, the device will be marked as being avail-
oble to other jobs providing that no other DCBs are open to
the device,

Closing other types of data files requires no action,

OPEN AND CLOSE SYSTEM CALL FORMAT

OPEN and CLOSE system calis have the format
CAL]1, 1 oddress

where oddress points o word 0 of the FPT shown below.

word 0

*I Code 0————0 DCB oddress l
© 1 2 3Ta 5 6 718 9 10 11712 13 14 1514 17 10 19120 21 5] £ n
word 1

» [P

1| 2|0 0/"|0 OI
0 1 2 314 5 & 778 9 30 11112 43 sa STae OF 1@ 19130 3% F) 1

optional (P1)t

p 0

Error oddress

43 6 UL B BCAL) T v

optional (PZ)'

0 Abnorma! address

] R A A R U R AR A R

) 4 5 &

optional (P11)}

*0 0 Blocking buffer address
T T T T T I T R T T N T R TR R Y Y

where
Word 0

Code is X'14' for OPEN, X'15' for CLOSE,

DCB oddress is the oddress of the associated DCB.
Word 1
P] is the error address parometer presence indicator

(O means absent; 1 means present).

P is the abnormal address parameter presence in-
dicator (0 means obsent; 1 means present),

P is the blocking buffer address parameter pres-
ence indicator (0 means absent; 1 means present).

Word Options

Error address is the address of the entry tothe user's
routine that will handle error conditions.

Abnormal address is the oddress of the entry to the
user's routine that will handle abnormal conditions.

Blocking buffer address is the address of a 257-word
buffer to be used for file directory search if the
DCB being closed is assigned to a disk file.

READ A DATA RECORD

READ The READ function causes the 1/0 system to read
a data record into a user buffer from the device or file spe-
cified by the DCB.

An implicit OPEN will be performed oathe DCB if the ad-
dressed DCB is closed when the READ request is made.

Yin oll FPTs for 1/0 functions where on optional parameter
is not used, the parometer word must be omitted from the FPT
ond the corresponding presence indicator (P) set to 0.

I/0 System Calls 55

READ requests may specify either a “wait for completion®
or an “immediote return" condition. Foreground requests
with wait must include error ond abnormal returns in the
FPT. Background requests con omit these oddresses and
have the system handle error and abnormal conditions.

Should the input record be physically longer than the speci-
fied buffer length, dota is lost ond the user is notified
through an abnormal return with code 07.

Should the input record be physically shorter thon the speci-
fied buffer length, the buffer is not filled and the actual
record length is posted in the FPT or DCB.

Input from the card reader is performed either in automatic
or binary mode. If the cardreader is not the C device, the
input mode is determined by the BIN flag in the DCB. The
C device is olways read in outomatic mode. Foreground
programs may not read the C device as this would disrupt
the background job stream.

Input from the C device results in all control commands (!
in column 1)being interceptedby the 1/0 system. Any con-
trol commond other than IEOD causes an abnormal return
with o code of 06 in register 10. The input record is kept
in the CP-R control command buffer. [f an attempt is mode
to read this some device again, an error return with code 54
is given (see Appendix N).

An 'EOD record encountered from o card reader on a READ
request results in an abnormal return with code 05.

For direct access input from disk files, the user includes a
key in the FPT. All READ requests without o key parameter
are ossumed to be sequential occess requests and result in
the next record in order being input into the user buffer.
For sequential input from blocked files, the request may not
result in an actual disk access.

For sequential access input from compressed files, the 1/0
system decompresses the record in transmitting it to the user
buffer,

Type 11READ requests must include in their FPTs a completion
status parameter in which the type of completion code and
the actual byte count are posted.

A Type | READ request that finds the DCB busy with a pre-

vious Type 1 request results in an error condition (error
code 48).

WRITE A DATA RECORD

WRITE The WRITE function causes the 1/0 system to
write a duta record from o user buffer to the device or disk
file specified by the DCB.

WRITE requests may specify "woit" or "no-wait". As with

READ requests, foreground WRITE requests specifying wait
must include error and abnormal return addresses in the FPT.

56 1/0 System Calls

Fordirectaccess output to disk files, the key address parom-
eter is included in the FPT. All WRITE requests without o
key oddress porometer present are assumed to be sequential
occess requests.

For output to compressed files, the 1/O system compresses
the record in transmitting it to the system blocking buffer.

Type 11 Write requests must include o completion status pa-
rameter word in their FPTs in which the 1/0 system will post
the type of completion code and the actual byte count.

A Type | request thot finds the DCB busy with o previous
Type 1 request results in an error condition (error code 48).

READ AND WRITE FUNCTION CALL FORMAT

Calls for these functions are of the form

CALl, 1 oddress

where address points to word 0 of the FPT shown below,

word 0

*I Code 0—M—0 DCB address

Q0 2 Jle . @ .o [N AU | Tr 1. . ae adies & ¢n 20128 MY

word 1

PIP|P P P plPiP|P L FIF|F {6 |F |F F

AEAMNAS UL 0]} [mm—,] 01 1] A (0] (o]
0 © [N R LAY ARF ST R AR M | B2)0 (0 AR/ BV ALSTNY BED TN AT | 30 2 11

optional (P1)
0 0 Error oddress

V2 374 5 o T& ~ 2NN 1Y 08 5l - 8 - 72 DI 2vlza,: 26 T H R X 1

optional (P2)

0 0 Abnormal address]
1T 2 314 5 ¢ 718 9 W 11132 13 14 15T 1714 2 3 ED

tiona! (P3)
*10 0 Buffer address

T 2 314 5 & J18 9 001117 15 14 15716 17 18 WIK 21 32 23174 25 26 27128 3 % 3
.
optional (P4)

*10 0 Byte count
12 374 L & 708 9 W bz i) 14 il Il”m)lll?lh‘ziuv?.””.‘!l

tional (P6)

*0 0|‘°"
© 1 2 314 5 & 216 9 0 01112 13 14 1576 17 48 19 V2223124 75 7 a

otional (P7)

* & pC
A SR AL AL BT I RO A L AE R I R T R AL R R
tional (P8)
*10 0 Key

(R S S Wi § Qa1 PO F TR S T)6 I R AT O R L L O
optional (P9)
1i0 0 End-oction address/no.

O i 2 3Ta ;"¢ TT8 ® 30 1112 13 1a 15716 17 16 19 . 20 22 23124 22 26 27126 29 X

optional (P10) »
C . n

oo‘lieehon g 0—0 Actuol byte count I
T T 30a S ¢ 718 VRT3 1 Blw 171 A% 31 Y

optional (P11)

*0 Blocking buffer oddress I
™ryirYy rm‘-mrrm

optional (P13)

o

Time
13 314 S & 218 8 10 1112 13 14 15146 17 10 19920 21 22 23124 25 26 27726 2% X 31

where

Word 0
Code is X'10' for READ and X'11' for WRITE.

DCB oddress is the address of the associated DCB.

Word 1

P' is the error address parameter presence indicator
(0 means absent; 1 means present).

P2 is the obnormal address porameter presence indi-
cotor (0 means absent; 1 means present).

3 is the buffer oddress parometer presence indi-
cator (0 means absent; 1 means present).

P is the byte count parameter presence indicator
(O meons absent; 1 means present).

P is the byte displacement parameter presence
6 . .

indicator (0 meons absent; 1 means present),
P7 is the prompt character presence indicator

(O meons absent; 1 means present).

PB is the key parameter presence indicator (0 means
absent; 1 meons present).
P9 is the end-oction parameter presence indicator

(O means absent; 1 meons present).

P

isthe completion code porometer presence indi-
cator (0 means absent; 1 means present).

10

P is the blocking buffer address parameter pres-
n . e
ence indicator (O means absent; | means present).
913 is the time interval porameter presence indi-
cator (0 means absent; 1 means present),

Fy=1 specifies that 1/0 is to be allowed only if
the device has been deactivated (i.e., marked

"down"); this bit is for diognostic=program usage.

=0 specifies thot 1/O is to be allowed only if
the device has not been deactivated; normal pro-

grom usoge.

F2' is the direction indicator for READ (0 means for-
ward; | means reverse). This indicator has effect
on magnetic tope Read/Write operations only.

F is the wait indicator (0 means no-wait; 1 means
wait for 1/0O completion).

F4 is the RAD Check-Write indicator (1 meons o
read or write on a RAD or disk pack will be fol-
lowed by a Check-Write operation; 0 means o nor-
mal read or write will be performed).

F

7= 1 is the abort override indicator. If set, con-
trol will be returned to calling instruction + 1
if errors ore detected and no error address parom-
eter hos been provided.

F8 is a delete on post indicator (1 means delete the
event when it is posted — no CHECK will be per-
formed and the user's FPT/DCB will not be posted:
0 meons @ CHECK will be performed). Fg has
meaning only when F3 =0.

Word Options

Error address is the address of the entry to the user
routine that will handle error conditions for re=
quests specifying woit,

Abnormal oddress is the address of the entry to the
user routine that will handle abnormal conditions
for requests specifying wait.

Buffer oddress is the word aoddress of the user buffer
to be used in the 1/0 operation. Data is written
from or read into this buffer. If this parameter is
omitted, the buffer oddress is taken from the DCB
(BUF). The buffer oddress may not be a register, |

Byte count is the size in bytes of the dato record,
If this porameter is omitted, the record size is
token from the DCB (RSZ parameter).

BTD is the byte displacement (0-3) from the word
boundary of the beginning ofth;duto record, If
this parameter is omitted and the Buffer address pa-
rameter is included in the FPT, value Ois assumed
for BTD. If bothparameters are omitted from the
FPT, the values of the DCBare used for both.

PC is a prompt character to precede a keyboard-
printer read with editing. If not specified, the
prompt character associated with the job is used,

1/0 System Calls 57

Key is the number of the granule within a disk file
or area to be accessed with the direct-access
method. For the device-access method, key is the
number of the sector to be accessed, relative to
the beginning of o disk.

1,End- action address/no. 1 indicates the contents
of the End=action address/number field, End-
action is allowed only for foreground.

Value 0 indicates an end-aoction oddress,

Value | indicates an interrupt number,

Value 2 indicates an interrupt operationa!
labe!.

Value 3 indicates a completion signal address,

End-action is taken only in the case of an octual
I/Ooperation involvingaperipheral device (i.e.,
end-action will not occur for blocked disk file I/ O).

Completion status is the word wherein the 1 Osystem
posts the completion parameters for the request, Pre-
sence of this word indicates that the 1’ Orequest
should be of Type Il (see Pyg). The I/ O system ini-
tializes the completion code and actual byte count
to zero before starting the operation. At comple-
tion of the request the actual byte countand the
completion code are posted ifthe wait indicator
was set, Otherwise, these parameters are posted
when the service is CHECKed,

BUSY is the FPT busy indication that is set and
maintained by the I/ O system to indicate that o
.Type Il request using the FPT is in progress.

Blocking buffer address isthe address of a 257-word
buffer to be used for file directory search if the
DCB is being opened to o disk file.

Time interva! is the moximum number of seconds that
the coller will wait for the CALL to complete, If
not specified the CALLwill not be timed-out. Note
that the 1O system may time out a device but this
is independent from the use of the "Time Interval "
parameter,

REWIND. UNLOAD. AND WRITE EOF FUNCTIONS

REW The Rewind function causes a data file to be posi-
tioned ot its beginning if the file is on mognetic tape or
disk, Rewind of a file on mognetic tape is accomplished by
causing the tape drive to rewind to beginning of tape. Re-
wind of a disk file is accomplished by setting the file posi-
tion parameter in the RAD File Table (RFT) so that the next
sequential occess request on the file results in the first rec-
ord being occessed. ARewind request for on extensible disk
file results in the file being positioned ot the first record of
the first extent. A Rewind request for a dota file on any
other device results in no action being token.

UNLOAD The Unload request results in the some action
as Rewind except that magnetic topes are rewound “off-
line". When the rewind is concluded, operator action is
required before the device con be used ogoin.

!
58 1/0 System Calls

WEOF Write End-of-File causes on EOF to be written
if the addressed DCB is assigned to o magnetic tape unit. If
the DCB is assigned to o cord punch, and IEOD record is
output, If the DCB is ossigned to a disk file, an implicit
EOF is written, If the disk file is extensible, all extents
pxt the current one will be deleted, If the DCB is assigned
to any other type of device, no oction is taken.

Rewind (REW), Unload (UNLOAD) and Write End-of-File
(WEOF) colls are of the form
CALL 1 oddress

where address points to word 0 of the FPT below.

word 0

*| Code 0|0 0 DCB oddress

Q9 ' 2 3ta 5 o “TE - [N A

word 1 (optional)

*|%[0——=01%[%|00 ;{0 0|%"[of30—o0
2 Y 4 > e TE F O N T T

optional (P1}

0 0

7 34 MR R

Error oddress

optional (P2)

] 0 Abnomal oddress
S R R I e I i T S FERNE

optional (P9)

1{0 0

T 274 ° s "TE ° .

End-action oddress no.
optiona! (P10)

Completion
code
V1 2 574 o=

optional (P13)

al<wnce

0 0

Time Interval

€ 1 2 3Te & e U Sl & P TN L0 D TR ek ot oaroooar ol
where
Word 0

Code is X'01' for REWIND, X'02' for WEOF, and
X'03' for UNLOAD.

P0 =0 meons word 1 of the FPT is absent;

=1 means word | of the FPT is present,

If 0, REW and UNLOAD are done without wait ond
WEOF is done with wait, Otherwise, the action
taken depends on word 1,

DCB address is the oddress of the associqted DCB.

Word 1 (optional)

P is the error address parameter presence indicator
(0 means obsent; 1 means present).

P, is the abnormal address porameter presence
*© indicator (0 means absent; 1 means present),

Pp & the end=oction parometer presence indicator
(0 means absent; 1 means present).

PIO is the completion code parometer presence
indicator (0 means absent; 1 means present),

(4 is the time inferval parameter presence indi-
cator (0 meons absent; | means present),
Fo =1 specifies long wait,
1= 1 specifies that 1/0 is to be allowed only if

the device has been deactivated (i.e., marked
"down"); this bit is for diagnostic-program usage.

=0 specifies that 1/0 is to be allowed only if
the device has not been deactivated; normal pro-
grom usoge,

F is the wait indicator (0 meons no~wait; 1 means
wait for I/O completion).

Word Options

Error address is the address of the entry to the user
routine that will hondle error conditions for re-
quests specifying wait.

Abnormal aoddress is the oddress of the entry to the
user routine that will handle abnormal conditions
for requests specifying wait.

1, End-action address/no. 1 indicates the contents
of the End-action oddress/number field. End-
action is allowed only for foreground.

Value 0 indicates on end~action address.

Valye 1 indicates an interrupt number,

Value 2 indicates an interrupt operational
label,

Value 3 indicates a completion signal oddress,

End-action is token only in the case of an actual
1/0 operation involving a peripheral device.

Completion status is the word wherein the 1/0
system posts the completion parameters for the re-
quest. Presenceof thisword indicates that the 1/O
request should be of Type Il (see Pig). The 1/O
system initializes the completion code fo zero before
starting the operation, At completion of the re-
quest the completion code is posted if the wait
indicator was set, Otherwise, these parameters
are posted when the service is CHECKed.

BUSY is the FPT busy indication that is set ond
maintained by the 1/O system to indicate that o
Type Il request using the FPT is in progress,

Time interval is the maximum number of seconds that
the coller will wait for the CALL fo complete, if
notspecified the CALL will not be timed-out. Note
that the1/0 system may time 6ut o device but this
is independent from the use of the "Time Interval"
porameter,

FILE AND RECORD POSITIONING FUNCTIONS

These functions are used to alter position within a data file
on magnetic tape or disk.

PFIL,PREC A Position File (PFIL) coll couses a mog-
netic tope to be positioned ot the beginning or end of the
current file if o bockward or forward direction respectively
is specified and no skip is requested. If skip is requested,
the tape is positioned as above except that the file mork is
skipped over in the specified direction. Position File for-
ward without skip positions the tape ot the end of the

current file (before the EOF). With skip, Position File

forword positions the tape at the beginning of the next file.

Position File causes o "rewind"” of disk files when "backward”
is specified, ond positioning after the last record in a disk
file when "forward" is specified. The file will be positioned
after the last record in the last extent if the file is extensible.

Position Record (PREC) causes o tape or disk file to be moved

n records in the specified direction. For extensible disk
files, this may require crossing extents,

Position File ond Position Record are ignored when the
data files are on devices other than magnetic tape or disk
file.

File ond Record positioning calls are of the form
CAL1, 1 oddress

where address points to word O of the FPT shown below,

word 0
r
*| Code 0l0—0 DCB address
O B A B A A LT B B R I LA T R E T E R AL
word |
a0 HEA
[214 F
12|10 o».:lgo'uo-—————-—o»;;,;o—o
12 31a 5 & ¢ W0 lzuumunuwlx‘n 22 23126 25 26 T 5 XX 30
optional (P1)
w*
n

T 2 374 3 6 TI8 F W IN1Z 1306 1oTia 17 18 WK J1 i 23124 2 26 TTIF 2 % =

optional (P2)

0 0 Error oddress

V2 JTa s & 778 @ 10 11213 va 1510 17 10 o120 21 27 23124 25 20 2772F 2 X0 3

1/0 System Calls 59

optional (P9) _
1{0 Ol End-action oddress/no. l
kB AL B BEBRALIA

optional (P10)

Completion |3
code g 0——0 Actual record count
T T T T T T T R T R R R T T R R NIRRT

optional (P13)

Time Interval

W12 13 14 150 17 8 Wi N 1

1 ZIta3 e

where
Word 0

Code is X'1C' for Position File (PFIL) and X'1D’
for Position Record (PREC),

P =1 indicates the explicit use of the Po, P1p,
Fy, ond WAIT parameters.

=0 Po, Pyo, Fy, ond WAIT are ignored and the
CAL is processed as Type I with wait and no end-
action.

DCB aoddress is the address of the associoted DCB.

Word 1

P is the record count (n/address parometer pres-
ence indicator (0 meaons absent; 1 means present).
Py is ignored for Position File. If Py is absent,
n assumes a value of 1,

P is the error address parameter presence indicator
(0 means absent; 1 means present),

P9 is the end-action parometer presence indicator
(0 means absent; 1 means present).

PIO is the completion code porameter presence
indicator (0 means absent; 1 means present).

P 3 is the time interval parameter presence indi~
cator (0 means absent; 1 means present),

Fy =1 specifies that 1/0 is to be allowed only if
the device has been deactivated (i.e., morked
*down"); this bit is for diagnostic-program usage.

=0 specifies thaot 1/O is to be allowed only if
the device has not been deactivated; normal pro-
gram usage.

SKIP indicates whether the EOF is to be skipped
over in positioning mognetic tape. This porameter
has significance only for Position File ond on mag-
netic tape (0 means no skip; 1 means skip).

60 1/0 System Calls

DIR is 'Be direction indicator (0 meons forward -
positioning; 1 means bockward positioning).

WAIT is the wait indicator (0 means no-wait; 1
means wait for 1/O completion).

Word Options

n is the number of records to position.

Ervor oddress isthe oddress of the entry to the user's
routine that will handle error and abnormal condi-
tions (EOT, BOT, etc.), for this 1/0 operation.
EOF is considered an abnormal condition for PREC.

1, End-action address/no. I indicates the contents
of the End-action address/number field. End-
action is allowed only for foreground with the ex-
ception that no end-action will take place for
blocked disk file 1/0.

Volue 0 indicates on end-action address.

Value 1 indicotes an interrupt number.

Value 2 indicates an interrupt operational
label.

Value 3 indicates a completion signal oddress.

Completion status is the word wherein the 1/O
system posts the completion parameters for the re-
quest (presence of this parameter indicates that
the request is of Type 1I). The I/O system initial-
izes the completion code and actual record count
before starting the operation. At completion of
the request the actual record count and the com~
pletion code are posted in the word if the wait
indicator is set. Otherwise, these parameters are
posted when the service is CHECKed. BUSY is
the FPT busy indicator that is set and maintained
by the 1/0 system to indicate that a Type 11 1/O
request using the FPT is in progress.

Time interval is the maximum number of seconds that
the caller will wait for the CALL to complete. If
not specified the CALL will not be timed-out. Note
that the /O system may time out a device but this
is independent from the use of the "Time Interval"
parameter.

-
-

ALLOT, DELETE, AND TRUNCATE FUNCTIONS

ALLOT The ALLOT function is used to define o new
file in a permanent disk area. This is accomplished by add-
ing o new entry to the file directory in the specified area.
The defined file will receive the specified size and format.

e < e s e

This call hos the form

CALl, 7 oddress

where address points to word 0 of the FPT shown below

‘word 0
X'5A" 1{0——0 Area l
1T 2 3Ta 3 & 708 F W 1101213 16 15706 17 18 X 20 3
word 1 i
i afn 55l [50] 2 o—off| o 0{%{1(0{5{0|%
CEEEO [] W Nl 13 14 1576 17 18 x N M » T 0 3

tiona! (P1}
IO 0
] 4 5 & 7 CIRDAYI I

15l 17 18 wiX 22 23124 25 % D128 29 3

Error oddress

tiona! (P2)
L 0 OIORG
© 1 2 374 5 6 718 ¢ 10 11012 13 14 15736 17 46 19120 20 24 35 I
required (P3)

N L R AL R R R R A AL R L) T
optional (P4)

C5 Cs C7 Cg

LN B AR M IR AL wnnzuuuunumiﬁt_ﬂ"ﬁ‘m‘mﬂ'ﬂ'ﬁ'

optional (P5)

* FSZ
AR R AL A RN R R S AR AR L R L O A O
optiona! (P6)
RSZ
Tt T T T T T T T W T Y i T E T T E YT T
optional (P7)
* ESZ
T T T e T T R I D M Bl e VAN EB NS RDIREYT
optiona! (P8)
* GSsz

B 1 2 314 5 6 718

optional (10)

0

o

ptional (P14)

Type
Compfeﬁon 0
v 2 1la 5 ¢ 4 9 W nin XJI‘WNWT‘N}lBE]‘S:””Z‘::‘

*10

0

L] l]‘hso71lTWhl5!5u|sul’|i?§!|55§5§55’55|

where
Word O
X'5A"

Area

account name oddress

specifies the code for the ALLOT call.

is the name of the permanent area in which
the file is being defined.

1f the disk arec name

value is zero, the disk area is unspecified.

Word 1

P‘I is the error address porameter presence indicator
(O means absent; 1 meons present).

is the file organization parometer presence in-
dicator (0 means absent; 1 means present).

N

I’4 is the file name second word parameter presence
indicator (0 means absent; 1 meons present),

P5 is the file size parameter presence indicator
(0 means absent; 1 means present),

P6 is the record size porameter presence indicator
(0 meons cbsent; 1 means present).

P is the extent size parameter presence indicator
7
(0 meons absent; 1 means present),

8 is the gronule size parameter presence indicator
(0 means absent; 1 means present),

PlO is the type-of-completion parameter presence
indicator (0 meons do not post; 1 means post type
of completion).

PH is the accountnome address parameter presence
indicator (0 means dbsent; 1 means present),

F2 is the resident foreground load module indicator
ond is applicable only if the area is FP. A zero
means the file is not fo contain o resident foreground
load module.

F5 is meaningful only if ESZ option is present and is
used to determine whether or not the file should be
combined with ifs extents if the area is squeezed
(1 means do not combine extents; 0 means combine
extents),

F7 =1 is the abort override indicator. 1f set, con-
trol will be retumed to calling instruction + 1 if
errors are detected and no error address parameter
hes been provided.

Error oddress is the return oddress for all errors,
The error code will be in byte O of register 10
and the address of the location following the call
will be in register 8,

Ci ore the EBCDIC characters naming the disk file
being defined, 1f C5-Cgare bftnks, the word con-
taining them may be omitted.

ORG is the file organization type:

00 for unblocked
01 for blocked
10 for compressed

The default is unblocked.

1/0 System Calls 61

FSZ is the file size in logical records. The default
is 1000 records.

RSZ is the number of words per record. The logical
size is used in sequentially accessing a file. For a
compressed file, record size is omitted ond the
monitor blocks compressed files into 256-word rec-
ords, Blocked files have a defoult volue equal to
128 words per record. If the record size is greater
than 128 words, unblocked organization will be
given. Unblocked files have a default record size
equal to the granule size, The maximum record
size is 16, 383 words,

ESZ is the size of file extents, in logical recerds,
to be allocated and attoched to the file anytime
the file is out of space. A value of zero meons
that file extents will be the samesize as the original
file (FSZ). The default is no automatic file
extension.

GSz is the gronule size in words ond is used for
direct access only. The default size will be equal

to the disk sector size. The maximum granule size
is 16,383 words.

Type completion is the byte in which o type-of-
completion code will be posted by the service
‘function.

account name address is the oddress of a two~word
data block that contains the account name in
EBCDIC, filled to eight characters with trailing
blonks. 1fthe account name is all blanks or numeric
zero, it is assumed to be unspecified.

Software write protection is provided which allows fore-
ground load modules to ALLOT files in any dato area.
Bockground load modules may only ALLOT files in back-
ground dota areas. Software write protection may be over-
ridden with an SY key-in.

The following defaults for area and account names apply:

1. If neither account name nor area name is specified, the
calling task's account is used, and the area may be any
public area. This provides the simplest specification,
and the user need not be concerned with the possibility
of name conflicts other than within his own account,

2. If the account name is specified, but the area nome is
not, the file may be in any public area. This provides
the area~-independent file specification.

3. If the area name is specified but the account name is
not, the system account will be used. This case provides
compatibility for code written before the addition of

file account names,

DELETE,TRUNCATE The DELETE system call is used to
delete a disk file in o permanent area by removing the entry
from the directory in the specified area. The space that wos

62 1/0 System Callis

formerly used is available for a new file. If the file is
extensible, all extents in the file are deleted. The TRUNCATE
system call is used to fruncate empty space from the end of
the specified file in o permanent area. The allocated space
will be set equal to the actual length of the file, If the file
is extensible, the last extent will be truncated to the last
record in that extent. Prior extents are unaffected. Note
that if the file size is zero, the file will not be truncated.

Calls for these functions are of the form
CAL1,7 oddress

where oddress points to word 0 of the FPT shown below,
word 0

—

Code 0 ————0 Areo
0 1 2 JTa 5 ¢ 718 ¢ ncmulaunsuwnwzcinizu:-uuvna:cs'

word |

hlo] 1[4 o——o0/do—o[o —ol1|o—o]”
LT N ST R R) ARG I F B A6 TN) v

1 3fe 5 ¢ 718

optiona! (P1)

0 Error address
I B A I IR AS B B RO WA RS iR RN R - At

required (P3)

G C2 C3 7
T T T T T T T T T u s TN T I RN e R TR E YT
optional (P4)
Cs Cs <7 Cs
L A RO AL A R R R AT R A R A A R
optiona! (P10)

Ty
Coer:ﬁon 0 0
T T T Y T N T T T T W T T St T S TN Yy

optional (P14)

*0 0| eaccount name aoddress
V2 3Ta 5 & 200 ¢ »umuumnnnﬁlmzlnnluuunar::v

Word 0 -

Code X'58' specifies the DELETE call, X'5C' spe-
cifies the TRUNCATE call.

Area is the name of the permonent area that con-
tains the specified file. If the disk area nome
value is zero, the disk area is unspecified.

Word 1

P

1 is the error address parameter presence indica-
tor (0 means absent; 1 means present), -

P is the file name second word parameter presence
indicator (0 means absent; 1 means present),

P] 0 is the type-of-completion porameter presence
indicator (0 means do not post; 1 means post type
of completion.

Pl 4 is the occount name oddress parameter presence
indicator (0 means absent; 1 means present),

——

-

F7 #s an dbort override indicator (0 meons abort if
errors are detected ondno error address is provided;
1 means do not abort if errors are detected but no

error oddress is provided),

Word Qgﬁons

Error address is the retum address for all errors. The
error code will be in byte 0 of register 10 ond the
address of the location following the call will be
in register 8.

C are the EBCDIC characters defining the disk file
to be deleted or truncated. 1fC5-Cgareall blanks
they may be omitted.

Type completion is the byte in which a type-of-
completion code will be posted by the service
function.

account name address is the address of a two-word
data block that contains the account name in
EBCDIC, filled to eight charocters with trailing
blanks. Ifthe accountname is all blanks or numeric
zero, it is assumed to be unspecified.

Software write protection is provided that allows foreground
lood modules to DELETE/TRUNCATE files in any data area.
Background load modules may only DELETE/TRUNCATE files
in background data areas. Software write protection may
be overridden with an SY key=in,

The following defaults for area and account names apply:

1.

408

If neither account nome nor area name is specified, the
calling task's account is used, and the area may be any
public area. This provides the simplest specification,
and the user need not be concemed with the possibility
of nome conflicts other than within his own account,

If the occount nome is specified, but the area nome is
not, the file may be in any public area. This provides
for area-independent file specification,

If the orea nome is specified but the account name is
not, the system account will be used. This case provides

compatibility for code written before the addition of
file account names,

ALLOT OR DELETE SYMBIONT FILE

The JOB call is used to maintain symbiont files by

performing the following functions.

Allocate a job file in the input symbiont orea.
Check status of a previously allocated job file,

Delete o job waiting in the symbiont area.

The JOB call has the following format:

CAL1,7 oddress
where address points to word 0 of the FPT below.
Word 0

x'67' \jo 0 i

OV 2 3Ta s & 7T8 % 30 1102 93 14 15Te 17 18 12X 2027 23124 25 26 27128 2 X 3

Word 1

[4 PioP|P P id 3 F
11010} +] 5 ¢| 7{0[0}10[0 —0} 1 0 —————————0]"2{1 [0—0|*
O)0 2 ITa 5 & 278 # 30 11712 13 16 25716 17 08 W20 2v 22 23124 25 26 27/28 25 X 3
optional (P1)

0 0 Error Address

12 3T4 5 @ 778 9 10 1112 13 14 ISTH 17 00 19T 21 32 23724 25 2¢ £ 126 28 X 31

optiona! (P4)
*10 0 Batch file nome address
T T I S e T N DU R R TR T R SRR R YT
optional (P5)
*10 0 Job number

172 3Ta 8 ¢ 210 & 10 11112 33 va 1516 37 18 WIX 2022 23724 25 20 126 5 % 2
L4

optiona! (P6)

JOs
*0 Ofstatus
\ER BB AT USSR SRAL M AR R I-E RN TR B R E L AL]
optional (P7)
*0 0 Jobs Waiting
T2 314 5 4 7Y% 0 4 1 4 3

optional (P10)
TYC 10 0

T 1 iTe 5 ¢ 7 L) OF B R TR A N TP TR T PR FTIE TI Y A F 3 R

tional (P14)

0 0] account nome address |

»

T T T T T R T T R T T ST E R A R

where
Word 0
X'67" specifies the code for the JOB call.
Word 1
P is the error address parameter presence indicator

(0 means absent; 1 means present).
R

P is the batchfile name oddress parameter presence
indicator (0 means absent; | meons present).

P5 is the job number parameter presence indicator
{0 means absent; 1 means present),

P is the job status parameter presence indicator
(0 means absent; 1 means present).

1/0O System Calls &3

64

P7 is the jobs waiting porameter presence indicator
(0 means cbsent; 1 means present).

PIO is the type completion porameter presence

indicator (0 means absent; 1 meons present),

" is the account nome oddress parameter presence

indicator (0 nieans absent; 1 means present).

Fo | means to delete all symbiont files associated
with the specified job number, 0 means no files
are to be deleted. Note that when F2=1, the job
number parameter (P5) must be present,

is the abort override indicator (0 means abort if
errors are detected and no error address is present;
1 meons do not abort if errors are detected and no
error address is present),

Word Options

Error address is the oddress of the entry to the user's
routine that will hondle error conditions.

Batch file name oddress is the oddress of a three-
word dota block that contains on area nome in the
firstword in bits 16~-31 inEBCDIC ond a file name,
in EBCDIC, left-justified with training blanks in
the second and third words. Presence of this
parameter indicates that an input symbiont file is
being defined ond the symbiont file will redirect
symbiont occesses to the progrom deck in the spe-
cified disk file,

Job number is the wordwherein the systemwill post
the assigned job number when an input symbiont
file is defined.

When the status option is specified, job number iden-
tifies the job for which status is being requested.

Job status is the word wherein the system will post the
status of the file whose identification is specified in
the “job number" parometer. Job status may also be
requested when defining an input symbiont file. Job
status may be one of the following:

0

1 = running

]

completed

2 = waiting for execution

3 = does not exist

Jobs Waiting is the wordwherein the system will
post the number of jobs oheoad of the specified job
number. The jobs waiting parometer may be re-
quested on a status request or when on input sym-
biont file is being defined.

TYC indicates the type of completion of the re-
quested service,

1/0 System Calls

account nome address is the address of a two word
data block that contains the account name in
EBCDIC, extended to eight characters with trailing
blonks. If the account name is all blanksor numeric
zero, it is assumed to be unspecified. ’

The following defoults for area and account names apply:

1. If neither account nome nor area name is specified, the
calling task's account is used, and the area may be any
public area. This provides the simplest specification,
and the user need not be concerned with the possibility
of name conflicts other than within his own account,

2, If the account name is specified, but the orea name is
not, the file may be in any public area. This provides
for area~independent file specification,

3. [If the orea name is specified but the account nome is
not, the system account will be used. This case provides
compatibility for code written before the addition of
file account names,

PRINT AND TYPE FUNCTIONS

PRINT,TYPE The PRINT function couses the system to
list the user's messoge on the listing log device (operational
labe!l LL). The TYPE function causes the system to list the
user's message on the operator console device (operational
label OC). These functions are reentrant and available to
foreground programs. Error and abnormal conditions result-
ing from these functions are ignored.

Print ond Type may be performed without a wait for com-
pletion, but the user is warned that changing the output
buffer after return from such o request may result in the
output message being modified.

Calls for these functions are of the form

CAL1,2 oddress

where address points to word 0 of the FPT shown below.

word 0
[: Code 0 Of
A1 ¥ ate w TR o 0 MG b ga rTas i 18 X 20 22 D12 2. 26 DI R ER
word |
&
gL of'y0 0sjo—o0
T 7 376 56 Th v TN Wl T B WX D 2 Dlaisde DINN DD
word 2 (P1)
*10 0 Message address

0 0 2 IV 5T TTe - b N2 03 Ty v W RN 2t 3 e TR XD

optional (P13)

Time Interval

4 . n 13 1

where
Word 0

Code is X'01' for Print ond X'02' for Type,

Word 1

P is the message oddress parameter presence indi-
cator (P, =1).

P] is the time interval parameter presence indi-
cator (0 meons absent; 1 meons present),

F is the wait indicator (0 means no-wait; 1 means
wait for I/O completion).

Word 2

Message address is the oddress of the first wordof
the messoge, Note that the first byte of the first
word of the message must specify the number of
characters to be listed, up to amaximumof 132 char-
octers for o line printer and 85 choracters for o
typewriter, The oddress may be indirect and/or in
a register. [f the message is in registers, the wait
bit must be set,

Time interval is the maximum number of seconds
that the caller will wait for the CALL fo complete.
If not specified the CALL will not be timed-out.
Note that the 1/O system may time out o device
but this is independent from the use of the "Time
Interval" parameter.

DEVICE

The DEVICE /file Mode function is used to set the following
parameters:

Modes (MOD, ASC, D/P) in the oddressed DCB,
Record Size (RSZ) in the oddressed DCB ond in the
RFT entry if the DCB is assigned to an output file.

File Orgonization in the assigned file's RFT entry if
the DCB is ossigned to on output file.

Granule Size in the assigned file's RFT entry if the
DCB is assigned to on output file.

The parameters set in the RFT entries for permanent files will
be written into the file directory entry for the file when the
file is closed. Thus, this function defines the parometers
for permanent disk files.

This function is of the form
CAL1, 1 oddress
where address points to word 0 of the FPT below.

word 0

*| Code 0————0 DCB oddress

0 1 2 JJe S o TR & 90 2102 13 14 18T 17 18 19120 20 22 23124 25 26 27126 2 0 31

word |

pipfrir FIf F

1|2} 3} 4|0 Ofo|+[0{3|0—0
T T T T T T T T T T R R TR Y

optional (P1)

*|0 - 0 RSZ

12 3T4 5 6 716 ¥ 20 102 13 e sTe 17 18 91X 2127 23124 25 26 27126 25 X 31

optional (P2)

*0 0 lorc

1 2 314 5 & 2178 % loll'l} 13 14 500 17 1 WI20 2y 22 23124 25 20 27128 26 3G 31
optional (P3)

*10 0 GSz I
T2 374 5 & 708 9 0 11112 13 14 \Slee 17 16 9120 20 22 23124 25 3¢ 27126 2 X 3%

optiona! (P4)

10 0 NRT

12 3Ta 5 & 7270 ¢ 10 11032 13 14 15The 472 0 X 21 22 2l kL

where
Word 0

Code is X'22' for Device/File Mode.

DCB8 oddress is the address of the associated DCB,
Word 1
P is the record size parameter presence indicator

{0 means absent; 1 means present),

) is the file organization parameter presence in-
dicator (0 means absent; | means present),

P3 is the granule size parameter presence indicator
(O means absent; 1 means present),

P4 is the number of refries parometer presence
indicator (0 means absent; 1 means present).

Fo 1 means ASCII translation, 0 means EBCDIC.

1 meons unpacked format (7T) or BOO bpi (9T se-
lectable density); O meons packed format or
1600 bpi. 1

F 1 means BIN; 0 means BCD.

3

Word Qefions

RSZ is the maximum record size specification, in

bytes.

1/0 System Calls 65

Word Options (cont.)

ORG is the file orgonization type:

00 for unblocked
01 for blocked
10 for compressed

GSZ

NRT is the number of error recovery tries.

is the granule size in bytes.

DEVICE CONTROL FUNCTIONS
The DEVICE Control functions cause the system to set the
vertical-format=control or direct record control indicator
of the specified DCB to 1 or to 0.
This call has the form
CAL1,1 address

where address points to word 0 of the FPT below.
word 0

* Code [|[0—0 DCB address
T T T T e T T e T i u B e PR B BB N EREIBR X0
~word 1 !
0 o[3jo—o0
T 7 2314 356 7189 wulz 5w sts 16 1912 21 22 33134 95 26 128 9 0 I
where
Word 0
Code is X'05' for DEVICE/Format Control.
X'0B' for DEVICE/Direct Record Control.
DCB address is the address of the associoted DCB,
Word 1

F3 is the control specification (0 means no format
control or no direct record control; 1 means for-
mat control or direct record control).

CHECK CORRESPONDENCE OF DCB ASSIGNMENTS

CORRES The CORRES system call provides the user's
program with a means of determining if two open DCBs have
been assigned to the some physical device or file. If the
assignment of the two DCBs are equal, register 8 is returned
with a value of 1. If any error is found in the DCBs while
processing the CAL, if the assignments are found to be un-

equal, or if either DCB is not OPEN, a zero is returned.

The CORRES function call is of the form
CAL1, 1 address
where address points to word 0 of the FPT shown below.

word 0
*1 Code 0——0 DCB1 oddress
T T IS T s NI Rl R T U B BB R ERDRF RS

66 1/0 System Calls

word 1
10 0 DC82 aoddress -
C V2 374 5 0 TTE O G 1112 72 sa 15106 4 6 19720 21 32 25724 2 26 '8 ¥ X 1
where
Word 0
Code is X'2B' for the CORRES function,
DCB1 address is the oddress of the first DCB that is
to be checked for assignment correspondence with
DCB.,,.
2
Word 1
DCB, address is the aoddress of the second DCB that
is to be checked for assignment correspondence
with DCB] .
ASSIGN (Formerly Set Device/File/Oplb Index)

This service call is used to modify the 1/O medium in the
specified DCB. The DCB being modified must be closed. No
action will be taken if the DCBisopen. Whenan1/O medium
may be identified by either EBCDIC name or system table
index, the EBCDIC nome is used if the size of the DCB per-
mits. If the size of the DCB is too small to allow the spe-
cified assignment by either nomeor index, the service returns
an error, without changing the DCB.

When used in conjunction with the DEVICE (File Mode and
Format Control) service call, this function provides the

ability to dynamically assign @ DCB to a file, device, or
operational labe!.

Calls for this function are of the form
CALl,1 oddress

where address points to word 0 of the FPT shown below.

word 0
« X'08' 110 0 DCB address

0 1 2 J14 5 & 716 % 30 121334 15736 37 10 1912020 22 B2 25 26 ZiA P X)

word 1

L A LeLd

112|340 040 0

B AE R SEERAL L AR RIS RLRIR1N IR R) R R RR R AL B T
LY

optional (P1)

0 0 Error address
T T T T T T R S e YR E T I DR R PR P BT

optional (P2)
*10 0 Operational label

© 1 2 T4 s ¢ 718 #00 vt 13 va 1556 17 18 W1

122 231 X 3

tiona! (P3)
Eio 0 Device name oddress
4] 1 s 150w t 3

optional (P4)

*10 0! Areqa and filenome address
T T T e T T R T T e e T U BB N SR ER DR E T

optional (P14)

*

account name address
I N A AL AR R T I AR E R A K X AL R

where
Word 0

X'08' specifies the ASSIGN call.

DCB oddress is the address of the associated DCB.
Word !
Pl is the error address parameter presence indicator

(0 means absent; 1 means present).

Py s the operational label parameter presence in-
dicator (0 means absent; 1 means present and the
specified DCB will be assigned to an operational
label).

P is the device name address parometer presence

3 indicator (0 means obsent; 1 means present and the
specified DCB will be assigned directly to a de-
vice).

P P isthe area ond file name address parameter pres-
ence indicator (O means absent; 1 means present
ond the specified DCB will be assigned to a RAD
file).

P.' 4 is the account name oddress parometer presence
indicator (0 means absent; 1 means prasent),

Parameter bits (P2, P3, and P4) are scanned in left to right
order and the first nonzero bit terminates the scan (i.e.,
other nonzero bits are ignored).

Word Qeﬁons

Ecror oddress is the oddress of the entry to the
user's routine that will hondle error and abnormal
conditions.

Operational label is the operational label to which
the DCB will be assigned in bits 16~31 in EBCDIC.

Device name address is the address of a two~word
data block that contains the name of the device to
which the DCB will be assigned. ‘The device nome
is in EBCDIC, left=justified (i.e., CRA03).

Area ond filename address is the oddressof o three-
word data block that contains the area and file nome
to which the DCB will be assigned. The first word
contains the orea name in bits 16-31 in EBCDIC,
The second ond third words contain the file name
in EBCDIC, left-justified with trailing blanks.

account name oddress is the oddress of o two-word
data block that contains the account name in
EBCDIC, extended to eight characters with trailing
blanks.

The ASSIGN service does not provide defoults for area and
account names. It inserts only what is requested,

GETASN (formerly Get Device/File/Oplb Nome)

This service call is used to obtain the device, file, or oper-
ational label name to which the specified DCB is assigned
and information about the deviceffile.

The call for this function is of the form
CAL, 1 address
where address points to word 0 of the FPT shown below,

Note that if the requested optional parameter is not appli-
cable, the post word(s) will not change. For example, if .
the call requests a file name to be posted but the DCB is
assigned fo a device, then the area and file nome data
block will not be modified.

The DCB need not already be open, but will be left open
on completion.

word 0
[X'09' 10 0 DCB address
V2 3[4 S 6 708 9 10 (1112 13 34 15136 17\ 2N » 3
word ! .
h125) s [e| 5/ 3]0[0fn 0" [*0 0
T2 314 5 4 9 10 1112 13 e she 7 x 31 22 ERED
optional (P1)
D 0 Error eddress
S AN ACOE RCRAL B AR U PR R T g XN
ptional (P2)
dU 0 Operational labe! I
T 2 a4 5 6 706 9 W 1NV12 13 W 617 8 BN 2 812025 2% 728 » X I3
ptional (P3)
*0 0 Device name address
Ak AL IR BE BRAL 4
otional (P4)
*10 0| Areo ond file name oddress
T TS ylrv*mmwmm

1/0 System Calls 67

optional (P7)

tional (P5)
*10 0 Model number address
I R L SORAT R RULA R 37
optional (P6)
*0 (] File BOT
LA ERALEE ERALEA BN i 1718 wiX 24252 278290)

*0———0

File EOT

V248 e 7

optional (P8)

T RINTG U B e T ARE N DR eRE XY 3

«|0

0

ORG|

‘ol

T2 3Ta s 4 7108

optional (P11)

B R O AN R I R AR S YA X3

RSZ/GSZ

L] l‘l:!h LK IRAL]

tional (P12)

-]

§ W I3 14 U?l?w T e T T TNy)

Device Index

T2 374 5 6 778

optiondl (P14)

v B 4

[l H K 134

*

account name address
¥ 10 112 13 16 15tie 17 mﬂmﬁmﬂl

IR LR AL

optional (P15)

*

Write protect code

V2 3T4a s 6700

ptional (P16)

o

P W NN 1314187 17 8 WI0 2)

Ell

*10

0

T2 T4 5 6 700

where
Word 0

X'09'

DCB oddress

Word 1
]

4

DISC constants address

flal\‘!lJl‘lSMWlll’ll 25

is the code that specifies GETASN call.

dicator (0 means absent; 1 means present).

indicator (0 means absent; 1 means present).

is the oddress of the associated DCB.

4 is the error address parameter presence indicator
(O means absent; 1 means present).

2 is the operational label parameter presence in-

3 B the device name oddress parameter presence

Py 08 the area and file name address parameter pres-
ence indicator (0 means absent; 1 means present).

absent; 1 means present).

68 1/O System Calls

5 s the mode! number address parameter (0 means

l’6 is the file BOT parameter presence indicator
(0 means absent; 1 means present).

y Is the file EOT parameter presence indicator
(0 means obsent; 1 means present).

P is the file organization parameter presence indi-
cator (0 means absent; | meons present),

P is the record size/granule size parometer pres-
ence indicator (0 means absent; 1 means present),

P is the device index parameter presence indi-
cator (0 means absent; 1 means present),

P is the account name address parameter presence
indicator (0 means absent; 1 means present),

P is the write protect code porameter presence
indicator (0 means absent; 1 meons present).

Plé is the DISC constants address parameter pres-
ence indicator (0 means absent; 1 means present),

Word Options

Error oddress is the oddress of the entry fo the user's

routine that will hand!e error and abnormal conditions.

Operational label is the word wherein the system
will post the nome of the operational label to
which the DCB is assigned. The operational label
name will be posted in bits 16=31 in EBCDIC,

Device name oddress is the oddress of a two-word
data block wherein the system will post the device
name in EBCDIC, left-justified. If the specified
DCB is assigned to o disk file or to an operational
fabel which, in turn, is assigned to a disk file,
the address of the disk containing the file will be
posted.

Area and file nome oddress isthe address of a three-
word data block wherein the system will post the
area and file name. The orea nome is posted in
the first word of the data block in bits 16~31 in
EBCDIC. The file name is posted in the second
and third words of the data block, left-adjusted
with trailing blanks.

Mode! number address is the oddress wherein the
system will post the device model number in
EBCDIC (i.e., 7446). I the DCB is assigned either
directly or indirectly to a disk file, the model
number of the disk containing the file widl be posted.

-

File BOT is the word wherein the system will post
the beginning sector number of the file to which
the specified DCB is assigned. The sector number
is relative to the start of the disk. [f the DCB is
assigned to on area (file nome zero), the number
of the first sector in the area will be posted in the
BOT word.

—_—

File EOT is the word wherein the system will post
the lost sector number of the file to which the
specified DCB is assigned. The sector number is
relative 10 the start of the disk. 1If the DCB is os~
signed to an oreqa, the number of the last sector in
the orea will be posted.

ORG is the word wherein the system will post the
file organization type:

00 for unblocked
01 for blocked
10 for compressed

RSZ/GSZ is the word wherein the system will post
the record size or graonule size of a disk file.
Granule size will be posted if the file is a rondom
access file; otherwise the record size will be
posted.

Device Index is the word wherein the system will
post the device index.

account nome address is the address of a two word
datablock to contain the account name in EBCDIC,
extended to eight characters with trailing blonks.

Write Protect Code is the word wherein the system
will post the write protection code for the file's
areaq.

where

0 is Public
! is Background

2 is Foreground
3 is System
5 is IOE X
DISC Constonts is the oddress of a three-word data

block wherein the system will post the Tracks per
Cylinder, Sectors per Track, ond Words per Sector
of the disk on which the file is allocoted,

10EX 10EX calls (available to primary tasks only) are
of the form

CALl,5 oddress

where oddress points %o word 0 of the FPT shown below,

word 0
*| Code 0———0/von DCB/OP/DEVICE
0 1 2 3Ta s & 700 % 10 11712 13 ta 1574 7 W8 I + 25 3

word) .
2] 5|0 0|{0 0
1

L J $ 414 3 & 7“' L] 1
tional {(P1)
E 0 SI1O oddres:
T TR T NN T R TR R
optional (P2)
I|o (1] End-oction address/no.

12 3146 5 6 7018 v W NTI2 13 M 15Tk 17 48 19120 2122 23724 28 20 D128 % X 3¢

optional (P3)

Time

where

Word 0

Code = X"12' for SIO.
=X'13' for TIO,
= X'14' for TDV.
= X'15' for HIO.

DOD =00 if DCB oddress is given.
= 01 if on operational label index is given,

= 10 if a device index is given,

DCB/OP/DEVICE contains the DCB address, oper-

ational label index, or device index as specified.

Word 1

4 is the SIO oddress parameter presence bit (0

means absent; 1 means present).

P2 is the end-action paorameter presence bit (0
means absent; 1 meons present).

P

3 is the time—out presence bit (0 means absent;

1 means present).

-
Fo=l specifies that 1/0 is to be allowed only if
the device has been deactivated (i.e., morked
“down"); this bit is for diagnostic~program use.

=0 specifies that 1/0 is to be allowed only if
the device hos not been deoctivated; normal

program usage .

1/0 System Colls 69

Word Option

SI1O oddress is the address of the IOP command
doubleword and need be present only when the
call is anS1O request.

I, End-action address/no. 1 indicates the contents
of the End-action oddress number field,

Value 0 indicates end-action address.

Value 1 indicotes interrupt number.

Value 2 indicates interrupt label,

Value 3 indicates completion signal address.
Time is the number of seconds before the SIO is

considered timed out and is meaningful only for

queved requests, An HIO will be performed fol-

lowed by end-action if requested. If the time-out
increment is zero or not present the SIO will not

“Condition code 3 is set and condition codes 1, 2, and 4 are
reset if the 10EX code is assembled out or if the caller is
‘o secondary task. If an error is detected during the CAL
processing, no change is made to the user's condition codes.
CAL processing will be terminated and control will be trans-
ferred to the BADCAL (TRAP50) precessor,

TIO and TDV instructions ore executed immediately and the
condition codes and status ore returnedas shown in Table 14,

S1O and HIO instructions may or may not be executed im-
mediately, dependingon whether or not the device has been
preempted, The DEVICE PREEMPTION and DIRECT I/O
EXECUTION sections in this chapter describe device pre-
emption and the effect it has on SIO and HIO requests.

For 10EX function status returns on a device that is an
10EX device (preempted device and can be used by 1OEX
only), it is necessory to refer to the appropriate computer
and device reference manuals, Thisis required because, for
preempted devices, true hardware status and condition codes
are returned and these may vary from machine to machine.
The condition codes and stotus returned to the user are

be timed out. shown in Table 14,
Table 14, IOEX Function Status Returns
Condition Codes
Operation Major Status Queuved Preempted Register 8 Register 9
IOEX Device
SIO 10EX not present or 0010 0010 Unchanged Unchanged
caller is background.
Device is down (S10 1000 1000 Unchanged Unchanged
not accepted).
Request accepted. 0000 0o0-- Current com= X' 10000000"
mand address
Other None —— ——— -——
HIO 10EX not present or 0010 0010 Unchanged Unchanged
caller is background.
Request accepted. 0000 00-- Current com= X'10000000"
mand address
Other None —— ——— ———-
TIO and 10EX not present or 0010 0010 Unchanged Unchanged
TV caller is background. -
Other None —- —— —
'Dashes indicate true hardware status and condition codes returned. The appropriate computer and device reference
manuals should be consulted to determine the meanings of the condition code settings and the contents of the stotus
register,

70

1/0 System Calls

The command pairs for an SIO operation aore not checked for

optional (P2)

validity and therefore must be coded very carefully, The .
flags in the command pairs may be set according to the needs ‘0 0 Operational label
of the user, however, if device preemption is not being used pEaneE e TR R R ' ? o
ond the IOE Xrequest goes through the 1/0 queue, then the optional (P3)
flogs must always be set in such a way that only one inter- A .
rupt occurs for the request. A recommended set of flags for 0 0 Device name address
an s]o rquest wi'h one G‘Id pcil' is: V2 314 5 4778 % W NT12 U M 1 £ i
optional (P4)
10P Command -
Doubleword Bit Function Bit State *10 0] Area ond filenome oddress
(RSN I R R N IR AT A A I T A BRI PR AL T O T A 0 R
32 (DC) Data Chain 0 optional (P?)
33 (1ZC) Interrupt at Zero Byte Count 0 1o 0| End action address/no.
0 1 2 374 5 ¢ 718 9 30 11712 13 4 15106 17 0 1912C 21 22 23724 25 26 27/2E 25 X 5
34 (CQC) Command Chain 0 optional (P10)
Type .
35 (ICE) Interrupt at Channe! End 1 Completion || © 0
L N B R T N BN AT B AR LIS AT) Wl'l',zl‘um
36 (HTE) Halt on Transmission Error 1 optional (P13)
37 (1UE) Interrupt on Unusual End] Time
38 (SIL) Suppress Incorrect Length 1 optional (P14)
39) Skip 0 * occount nome address
T T I IS e T I R I IR R B SN NSO RF T
If command chaining is to be used, bit 34 (CC) will be set
ond bit 35 (ICE) must be reset in all but the last command where
pair.
Word 0

When 1/0 interrupts occur as a result of IOEX (SIO only),
end-action is initiated as requested in the FPT (see 1/0
END ACTION section in this chapter).

STOLB This function call is used to acquire or release
the specified resource for a job and/or change the assign-
ment of on operational label. The call is avoilable to both
foreground and background users. It is an asynchronous ser=
vice when the enqueue option is specified; it must be fol-
lowed by @ CHECK function if the no~wait option is re-
quested. Primary users may not use the enqueue option
with wait.

The STDLB call is of the form
CAL1,7 oddress

where address points to word 0 of the FPT shown below.

word 0

X'62' 110 ——0 OPLB
0 1 2 314 56 1] W NT12 13 W 15The 17 1 1
word 1 i
50—l 0oftlifo olt5/5l0—of"
0 1 2 4 5 & 208 ¥ 0 N2 a5l 7 18 n Ed DB XN kL
optional (P1)
0 i 0 Error address
T T T e T T R T U B R T AR E T DD N RDRP

X'62' is the code to call the STDLB function.

OPLB is the name of the associated operational
label in EBCDIC.

Word 1

Py is the error oddress parameter presence indicator
(0 meons absent; 1 means present),

2 is the operational label! parameter presence in-
dicator (0 means absent; 1 means present),

I’3 is the device name address parameter presence
indicator (0 means absent; 1 means present),

Py is the oreo and file name oddress parameter
presence indicator (0 meons absent; 1 means
present),

P9 is the end-oction parometert presence indicator
(O means absent; | means present).

I’l is the completion code porameter presence in-
dicator (0 means absent; 1 means present),

Pi3 is the timeout value porameter presence indi-

cator (0 means absent and no timeout will be done;
1 means present and the CAL will be timed out).

1/O System Calls 71

P.I 4 is the account nome address porameter presence
indicator (0 means absent; 1 means present).
Fi is the enqueue option indicator (0 meons do
not enqueue on resource; | meons enqueue on
resource).

F2 is the release option indicator (0 means do not
release a previously acquired resource; 1 meons
release o previously acquired resource),

F indicates fo woit for service to be completed
prior fo returning from the CAL,

Fo=1 is the abort override indicator. If set, con~
trol will be returned to calling instruction + 1 if
errors ore detected and no error address parameter
has been provided.

Word Options

Error address is the location to return to if immedi-
ate errors are detected.

Operational label is the operational label to which
the OPLBwill be assigned in bits 16-31 in EBCDIC.
If bits 16~31 are zero, the OPLB is assigned to the
null device,

Device name oddress is the oddress of a two-word
date block that contains the name of the device
to which the OPLB will be assigned. The device
name is in EBCDIC, left-justified (i.e., CRAO3).
If the two word data block is all zeros, the OPLB
is assigned to the null device.

Area and file Name Address is the oddress of ¢
three-word data block that contains the orea ond
file name to which the OPLB will be assigned.
The first word contains the area name in bits 16-31
in EBCDIC. The second and third words contain
the file name in EBCDIC, left-justified with trial-
ing blonks. If the three word data block is oll
zeros, the OPLB is assigned to the null device.

end-action
requested):

is as follows (applies only if enqueve

1=00 end-action is on oddress o BAL from
STDLB post.

1=01 interrupt address is to be triggered by
post.

I1=10 interrupt labe! is to be triggered by post.
Type Completion contains the code describing the

disposition of the service, including any error

codes.
BUSY busy bit is set to 1 when the service call

is initiated ond reset fo O when the service is
completed.

72 1/0 System Calls

Time is the maximum number of seconds that the
requestor will wait for STDLB to complete its
enqueue for the requestor. 1fnot specified or zero,
STDLB will not time out the enqueue.

account name oddress is the oddress of @ two word
data block that contains the account nome in
EBCDIC, extended to eight characters with trailing
blonks. 1f the account name is numeric zero or ol |
blonks, it is assumed to be unspecified.

Parameter presence indicators (P2, P3, and P4) are scanned
in left to right order and the first nonzero indicator is the
one used. If all three parameter presence indicators are
zero, the operational idbel is assigned to the null device.

The following defaults for area and account names apply:

1. If neither account name nor area name is specified, the
calling task's account is used, and the area may be ony
public area. This provides the simplest specification,
and the user need not be concerned with the possibility
of nome conflicts other than within his own account,

2, If the account name is specified, but the area name is
not, the file may be in any public area. This provides
for area-independent file specification,

3. If the orea nome is specified but the account name is
not, the system account will be used. This case provides
compatibility for code written before the oddition of
file account names.

STOP10,STARTIO These calls are of the form

CAL1,5 oddress
where address points to word 0 of the FPT shown below.

word 0
| Code [40ft[3[e]o00 DCB/OP/DEVICE
T T T T T T R T T A SR T AR N E SR E s SR e S

word 1 (optiona!) (PO)

0 ol%o 0

¢ 1 2 374 5 6 710 ¢ 0 123 15T 172 10 101X 20 22 237 28 26 2128 29 20 31

word 2 (optional) (P9)

1|0 0 End-action address/no.
0 1 2 3Ta 5 ¢ 778 % 10 11112 13 ta 15106 i) » XN
where
Word 0

code = X'10* for stop all system 1/0.
= X'11* for start all system 1/0. %
= X'0E' for stop all background 1/0.
= X'OF' for start all background 1/0.

= X*'18' for deactivate (dedicate to diagnostic use)
ond abort all 1/0.

= X'17" for activate and allow new 1/0.

PO =1 if more parameters follow and indicates the
presence of word 1,

HIO =0 for no HIO; = 1 for HIO (abort active request).

10P, DEV =0, 0 reserve entire controller(s).
=0, | reserve device.

= 1,0 reserve entire 10OP,

DOD = 00 DCB oddress is given.
=01 operational label index is given,

= 10 device index is given,

DCB/OP/DEVICE contains the DCB address, oper-
ational label index, or device index as specified,

Word 1
Py is the preemption address (end-action) parameter

presence indicator (0 means absent; 1 means pres-
ent). A stop all system 1/O call with Pg=1 means

the device will be dedicated to IOEX. Pg has no
meaning except in a stop all system 1/0O call,
Word 2

1, End=action address/no. I indicates the contents
of the End-action address number field.

Value 0 indicates end-action address.

Value 1 indicates interrupt number,

Value 2 indicates interrupt label.

Value 3 indicates completion signal oddress.
Condition code 3 is set and condition codes 1, 2, ond 4
are reset if any of these calls are made by o secondary
task, .

All condition codes are reset if o normal retum is made from

the call but no change is made fo the condition code if an
error is encountered during the CAL processing.

1/0 System Calls 73

9. USER-TASK SCHEDULING AND OPERATION

SCHEDULING AND LOADING PROGRAMS

The Overlay Loader links one or more relocatable object
modules to form a lood module, which is an absolute rep-
resentation of the program. The load module is created as
a disk file and consists of a header ond an absolute memory
image of the various progrom segments. The load module
header contains the program parameters used by the Root
Loader for loading the progrom root.

LOADING AND TERMINATING FOREGROUND
SECONDARY TASKS

Foreground secondary tasks are loaded into memory and pre-
pored for execution through the use of the INIT system cal!
or the INIT key-in. This process involves the following
operations:

1. The INIT service acquires the necessary control table
entries to establish the new task in the system. The
task is then placed in o CP-R dispatch queue ond will
begin execution in the task initiolization run-time
loader.

2. When the task is scheduled for execution (in normal
priority sequence) the run~time looder performs the
following steps.

e Acquires temporary work space from the Task Re-
served Pages segment.

e Opens the file containing the absolute lood mod-
ule and reads the lood module header.

e Acquires memory for the root segments and reads
them into memory.

o Tests for segments that are to be looded with the
root and loads them into memory.

e Satisfies any Public Library requirements.

o When the tosk is completely initialized in mem-
ory the temporary work space is released and the
original INIT service is posted as complete.

o Control is then transferred to the task's normal en-
try point unless the original INIT service requested
the STOP option or the DEBUG option.

e 1f the STOPoption was requestedthe task is placed
in o ‘stopped’ state awaiting a START service
call at which time the tasks normal entry point
will get control.

o If the DEBUG option wos requested the CP-R de-

bug service will be given control.

74 User-Task Scheduling and Operation

The ¢ntire task initialization sequence is executed in the
context of the task that is being loaded. Thus, multiple
simultoneous tesk-looding operations may be ongoing in
which case the tasks involved compete for system resources
(CPU time, memory, etc.)based strictly on their priority.

Secondary task termination may be effected by any of the
following:

o TERM service call (from the task itself).
o EXTM service call (from any tosk).

o EXTM key=in.

e KJOB service call,

e KJOB key-in.

o Failure of the task to properly process on error or ab-
normal condition from o service call or trap condition.

Task termination takes place in the context of the termi-
nating task. The process involves the following steps.

e Waiting for any ongoing I/Q operation to complete.
o Closing any open data files.
e Releasing memory resources.

o Releasing all interna! system-task controls which has
the effect of deleting the task from the system.

o [f the terminated task was the last task in a job, the job
will be deleted from the system (except for CP-R and
background jobs).

QUEUEING PRIMARY FOREGROUND PROGRAM
RUN REQUESTS

If the monitor contains the "run queuing" option, all RUN
or INIT requests for primary load modules are placed in
the Load Module Inventory Table and are given a priority.
The priority can be supplied by the user; if nb‘s‘cnt, CP-R
ossigns the defoult (lowest) priority to the request. In
oddition, o sequence number is ossigned to the request so
that priority conflicts con be resolved. The priority and
sequence determines the order in which the Foreground
Root Looder, which is part of the CP-R Control Task, at-
tempts to lood the primary foreground programs. Such
queved requests remain in the queve until loading is ac-
complished or until a release is issued.

LOADING AND RELEASING PRIMARY
FOREGROUND PROGRAMS

Loading and initializing of a primary foreground program
root is performed by the Foreground Root Loader, and in-
volves the following steps:

1. If the "run queuving” option has been assembled into
the monitor, the program to be looded is selected by
priority, where priority conflicts are resolved on a
first queued, first to be loaded basis.

2. Opening the file containing the absolute load module.

3. Building a Load Module Inventory Table entry that con-
tains the progrom name, core memory to be used by the
program (root and all segments), and the public libraries
required by the program.

4. Testing for required memory availability. If the "run
queuing” option has not been assembled into the moni-
tor and some portion of required foreground memory is
busy, a message is typed, the Load Module Inventory
Table entry is purged, and appropriate status is posted.
If the “run queuing" option is in the monitor and some
portion of required foreground memory is busy, o mes-
sage is typed, but the entry remains in the table. If
the foreground memory is not busy, the load process
performs the following:

e Loads the program root.

o Transfers control to the program start oddress,
taken from the lood module header, where the user
program initializes itself (connects tasks to inter-
rupts, conditions interrupts, etc.). When ini-
tialization is completed, the userprogram performs
an EXIT function call. The EXIT function will
recognize that initialization of a primary fore-
ground program has been completed ond will trans-
fer control back to the CP-R Contro! Task (the
EXIT call does not couse an exit from the Con-
trol Task).

Steps 1 to 4 above are then repeated for each program
to be loaded.

A primary foreground program root can be loaded by any of
the following:

IRUN control command

IROV control command

IINIT control command

RUN key-in

RUN system call from a foreground task
INIT system caoll

INIT key-in

Since the root looding occurs at the level of the CP-R
Control Task, primary foreground programs moking RUN

calls must give up the CPU EXIT) before the load can
be accomplished. Primary tasks con request the trigger-
ing of an interrupt ot conclusion of the root load and
initialization.

Release of aprimary foreground program is also performed ot
the CP-R Contro! Task priority through the fol lowing steps:

1. Disarming all interrupts connected to tasks within the
program.

2. Closing any open DCBs within the program to cause
1/O run-down in addition to closing data files.

3. Purging the Load Module Inventory entry, which has
the effect of marking the memory as not busy.

Release of o foreground program occurs os a result of either
an RLS key=in, RLS system call, EXTM key=in, EXTM sys~
tem call, KJOB key=in, or KJOB system call.

LOADING AND EXECUTING BACKGROUND PROGRAMS

The Task Initialization Run=time Loader also loads back~
ground programs as specified by control commands in the
background job stream at the background priority level.

Upon completion of the load, control is transferred to a

background program ot its start address. The background
program terminates execution with an EXIT or ABORTser=
vice call. After terminating a background program, CP-R
resumes processing the control commands from the back-

ground job stream.

TASK CONTROL BLOCK [TCB]

A Task Control Block must be associated with each centrally-
connected primary task, and is used by the system to save
the context of the interrupted task upon occurrence of the
given task's interrupt. The TCB is in the user program
(ossembly language users must allocate and define their
TCBs in the source code of their program). The FORTRAN
compiler generates implicitly the TCBs needed for a real-
time FORTRAN program.

Secondary tasks need not allocate TCB space as CP-R auto-
matically provides the table for them.

-
-

PRIMARY TASK CONTROL BLOCK FORMAT

The assembly language user must allocate a TCB in the

source code for each centrally-connected primary task in
the program. Each TCB begins on a doubleword bound-
ary and has a length of 26 words.

Task Control Block (TCB) 75

The CP-R CONNECT function fills in the TCB. When
completed, a TCB has the following form:

o S 1
1 Saved PSD
2 | Intermediate PSD to transfer to TCB + 4 with
3 | skeleton key
4 STM,0 TCB + 10
5 BAL, R1 RBMSAVE
é | Indicators |0——0 PCB oddress
7 |TeskID |0———0 TCB oddress
8 | PSD to transfer to task entry in proper state
9 | (mode, write key, etc.)
10
. 1 16 words for register saving
25
0 78 1415 31

where RBMSAVE is a system routine that saves the inter~
rupted task’s context in the TCB of the interrupting task

and transfers control to the start address of the interrupt-
ing task.

Users must never alter any portion of o TCB.

PROGRAM CONTROL BLOCK (PCB)

The Progrom Control Block contains the program=~associated
porameters used by the CP-R system to provide service
functions for the program. Every program, background and
foreground, contains o PCB that is allocated and constructed
by the Overlay Loader.

The Program Contro! Block defines the user Temp Stack to
be used by a program. It also contains a pointer to a list
of the DCBs associated with a program.

Since the Temp Stack is associated with the progrom rather
than individual tasks, different tasks within a program
should not use these stacks for data communication. Com-
mon storage can be used for communication between tasks
or between occurrences of a given task.

PCB FORMAT

The PCB is built by the Overlay Looder from parameters
specified on the IOLOAD control commond.

76 Program Control Block (PCB)

The PCB is of the form

0 78 14 15 25 26 31
o0j0 —————0 TSTACK-1
1 TS 00—
2{0——0 OVLOAD
3 Reserved
afcrer o 0 TRAPADD
51]0 0 MSLADD
3 Reserved
7 Reserved
8 Reserved
9 Reserved
10|0—0 DCBTAB
n Reserved
12 Reserved SSW
TSTACK User's Temp Stack }1‘55
0 78 1415 2526 31
where
TSTACK is the oddress of the current top of the

user's Temp Stack.

TSS indicates the size, in words, of the user's
Temp Stack.

OVLOAD is the oddress of the table used by the
segment looder to manage the program overlays.

Trap Control Bits 0-7) specifies how the various
traps are to be handled. An explanation of these
bits is given in the TRAP function description
later in this chapter.

TRAPADD is the address of the user's routine that
processes the various traps. -
-

MSLADD is the oddress of the M:SL DCB, which
is used to load overlay segments.

DCBTAB is the oddress of o toble of names and od-
dresses of all of the user's DCBs. This table has
the form shown below.

S——

SSW contains the user's sense switch settings.
Bit 26 contaims the setting of switch 1, etc. These
switches can be set and reset by the user via the
FORTRAN Library routines.

DCBTAB Format
0 15 16 31
DCBTAB Tota! no. entries in table
< C, C3 C4
Cs Ce Cy Csg
DCBLOC
G C2 C3 C4
Cs Cq Cy Cg
DCBLOC,
etc
0 1516 31
where

C)-Cg indicates the EBCDIC name of the DCB,
left-justified, with trailing blanks.

DCBLOC is the absolute oddress of the first word
location of the DCB.

USER TEMP STACK

The user Temp Stack is a “push-down/pull-up" stack
of memory locations that have been allocated by the
Overlay Looder. It is required for user-coded trap con-
tro! and subroutines that use Temp Stack storage (i.e.,
reentrant FORTRAN 1V Library routines),

The user can manipulate the Temp Stack by push/pull stack
instructions (PSW, PLW, PSM, MSP)that symbolically refer-
ence the external symbol U:PCB within their program (the
Overlay Loader will satisfy the REF to U:PCB when the
user's program is linked). The first doubleword of the Pro-
gram Control Block is the stack pointer doubleword used in
allocating (pushing) and releasing (pulling) blocks within
the user Temp Stack.

The "push-down/pull-up" functions operate on a last-in,
first-out basis, and these operations must be symmetrical in
number andsize. An attempt to push a blockthat is greater
than the remaining stack space results in overflow. Simi-
lorly, on ottempt to pull more out of the Temp Stock than
had been previously pushed down wouldresult in underflow.
These conditions result in traps that may be handled by the
user (see TRAP system call).

The size of the Temp Stack must be equal to or greater than
the total number of temp cells required by the maximum
number of nested routines using temporary storage; (i.e., if
a FORTRAN routine needs 16 temp cells and it calls o
routine that needs 19 cells, the total number of cells re-
quired would be 35). The number of cells required for trap
handling CALs is 22; the reentrant FORTRAN 1V Library
subroutines require 148 temp cells for each task,

Primary tasks ot different interrupt levels within the same
program share the program's Temp Stack, and allocation
must be sufficient to occommodate the maximum number
of tasks that could be enabled ot one time. When an
executing task exits, it must restore the Temp Stack pointer
to its original condition. This is particularly important
in a primary foreground progrom where aTemp Stack is al-
located for each program and not each task. Thus, if sev-
eral tasks in the some program share the program's Temp Stack,
the housekeeping of the Temp Stack pointer (e.g., sym-
metrical pushes and pulls) must be meficulous.

CP-R TEMP STACK

The CP-RTemp Stack is a "push-down/pull-up" stack of
memory locations that have been allocated by the Overlay
Looder. It is required for all service functions. The CP-R
Temp Stack is reserved for the exclusive use of the monitor;
users may not manipulate the stack since the stack pointer
doubleword resides within the monitor inprotected memory.

The size requirement of the CP-R Temp Stack is a function of
the particular monitor service being utilized. The worst-
case requirement is approximately 150 words. The default
size is 150 words.

MASTER AND SLAVE MODES

Both primary andsecondary foreground tasks can change their
execution mode through MASTER and SLAVE system function
calls. At entry to a primary task, the mode is set os speci-
fied by the function cal!l that caused the connection.

For secondary tasks the operating mode at entry is slave
mode and mapped. Secondary tasks are given master~
protected Mode, Mapped, by the MASTER system call.

Note: Serious consequences can result from improper oper-

ation in master mode. Secondary tasks must never
operate in unmapped mode.

X
OVERLAY SEGMENT OPERATIONS

Primary tasks control the looding of overlay segments through
the SEGLOAD system call by explicitly naming the de-

sired segment, by number. Background progremsthot have
been linked with the Simplified Memory Management (SMM)
option may also use the SE GLOAD call.

User Temp Stack/CP~R Temp Stock/Master and Slave Modes/Overlay Segment Operations 77

Secondary foreground tasks control their segment octivity

through the use of CP-R memory monagement service calls
described in o later chapter.

TRAP HANDLING

CP-R provides standard processing of trap conditions. A user
con either take advantage of the system processing or re-

quest that he himself handle certain trap conditions. Also,

certain traps con be ignored. System trap hondling involves
aborting the task that is active at the occurrence of a trap,

with the following exceptions:

1. An unimplemented instruction trap occurrence will re-
sult in the instruction being simulated if the simulation
package is in the system. If simulation is impossible,
the task will be aborted,

2. The user can mask out fixed-point arithmetic and deci-
mal arithmetic traps either through system call (TRAP
or JTRAP function) or ot primary-task connectiontime
(CONNECT, ARM, DISARM functions).

3. The user can mask out some floating=point trapoccur-
rences through use of the LCF and LCFI instruction.

4. Any unmasked trap can be received by the active pro-
gram. This is set up through the TRAP or JTRAP func-
tion call, wherein the user can specify the oddress of
a routine to handle the various trap conditions. This
oddress is kept on o per program or per job basis as
opposed to a per task basis.

When the user trap routine receives control, the following
items are stored in sequence in @ 19-word block of the
program's Temp Stack, starting on a doubleword boundary:
the PSD and the 16 registers saved when the trapoccurred,
and o word containing the trap location (right-justified).
Register 1 points to word 0 (first word of the PSD) in this
block. If 19 words are not available in the user Temp Stack,
the task is aborted.

The oddress of the user trap routine and the control bit for
each trap is kept in the PCB and the JCB (Job Contro!
Block, see Appendix H).

User trap handling or system trap handling is elso in-
voked if an invalid parameter exists in an FPT for a sys-
tem call that is unable to post the error condition. In
this case, a code of X'50' will be posted in the last word
of the user's Temp Stack if a user trap aoddress is present
in the PCB or JCB.

If the userhas requested break control via the INT service
call, the user Temp Stack will be set as described above and
an X'51' code will be posted in the lost word of the users
Temp Stack before contro! is transferred to the user's break
contro! routine.

Return from the user trap routine to the interrupted program
is accomplished by the TRTN and TRTY function, which re-
stores the context from the Temp Stack ond retums to the
location following the trappedinstruction or to the trapped
instruction itself, respectively.

78 Trop Handling/CAL Hondling/Return Functions

CAL HANDLING

Memory locations X'48', X'49', X'4A', and X'4B' are the
respective trop locations for the CALY, CAL2, CAL3, ond
CAL4 instructions. CALlinstructions are reserved for moni-
tor services, but the CAL2, CAL3, ond CAL4 trop locations
may be connected (centrally or directly) to o user-defined
routine by meansof the CONNECT function call. User CAL
service routines must reside in primary (unmapped)load mod-~
ules, even when they are intended for use by secondary tasks.

Centrally connected CAL routines will be entered in the
caller's map mode. The calling task's context (registers and
PSD)is saved in the calling task's user Temp Stack. In addi-
tion, register 0 will contain the address of the caller's user
stack control doubleword. Since centrally connected CAL
service routines are entered in the maop mode of the caller,
but reside in unmapped memory, they must be in a one-to-
one mapped orea of ony secondary task which uses them,
Possibilities are the memory between the end of the monitor
ond the start of secondary task memory (X'6000'Jor on active
fixed segment of the secondory task. Centrally connected
CAL routines return to the calling task via the CALRTN
function call,

Directly connected CAL service routines are responsible for
saving ond restoring the calling task's context, They ore
entered unmopped. If they do not need accessto the memory
of the colling tesk, they need not be concerned with map
mode or memory residence. If they need to access the mem-
ory of a secondory caller, however, they must notonly reside
in one~to-one mapped memory for the caller, they must also
determine that they were called from a mapped context and
set map mode for their own execution,

When o CAL; is executed, the effect is immediate; that is,
trops function more like BALs thon interrupts, except that
the environment is saved for centrally connected traps, but
is not saved for traps that are directly connected.

RETURN FUNCTIONS

CP=R provides users with the following return functions:

EXIT is used by background programs at the normal
completion of a background program. EXIT is used
by foreground programs when a centrally-connected
primary task has concluded the processing of an in-
terrupt. An Exit call from o primary tosk causes the
system to restore the context of the interrupted task,
clear and arm the highest priority active interrupt,
and return to the point of interrupt. Secondary tasks
should not use EXIT but should use STOP instead.

ABORT is used by background programs to cause
the system to abort the job containing the program.
The system will abort the background,program and
type o messoge on the operator console (OC) that
the job was aborted and give the address of the
ABORT call. Unless an IATTEND command was
present in the background job, the system will read
and ignore all records from the C device until the
next 1JOB card is encountered. If an ABORT call
is made from a foreground program, the program
will be terminated.

STOP is used by both foreground and background
secondary fasks when they wish to cease execu-
tion ond wait for a START call from another task.

TERM may also be used by background programs at
the normal completion of a background program.
TERM is used by foreground programs to release
ond exit,

INTERRUPT CONTROL

CONNECTING AND DISCONNECTING PRIMARY
TASKS TO INTERRUPTS

Interrupt connection may be accomplished through wse of
the CONNECT function call and disconnection through the
DISCONNECT function call. While these calls are usually
made during foreground program initialization (performed
at the Control Task priority level), this is not a require~
ment. Connections may be made to any interrupt in the
system except the clock pulse levels, the counter 4 equals
zero level, the /O level and any levels defined at SYS-
GEN for dispatchers, 1/O deferral or remote communica-
tions handling. However, tasks connected at a higher
priority than the /O level con not request any 1/O or any
services which require 1/O. A table of interrupts con-
nected within a program is kept by the system. The table
enables the foreground program release function to disarm
ond disable all interrupts associated with a foreground pro-
gram. In calling for connection the user may specify the
mode (master, slave) and the interrupt inhibit conditions
that are to exist at entry to the specified task. Two types
of connections are available, direct and central:

1. Direct connection results in immediate entry to the task
upon occurrence of the interrupt. The task must ensure
that the context is saved, as necessary, and restored
upon exit. Directly connected tasks may not use
any CP-R services.

2. Central connection results in entry to the task after the
interrupted task context has been saved. The CON-
NECT function constructs the TCB so that the con-
text save will occur. Exit from a centrally connected
task is by EXIT, which will restore the interrupted task
status, arm and clear the highest priority octive inter-
rupt, and return to the interrupted task.

Central connection causes only register block zero to
be saved, regardless of the block used in either the
new or interrupted context. The user must provide

register management if he uses other register blocks.

To perform the connection, the system fillsinthe TCB
previously shown. The PSDis constructed (TCB +8) to
transfer control to the user in the proper mode and
with the proper write key. An XPSD TCB instruc-
tion is placed in the proper interrupt location to
complete the connection.

Details of the system colls concemed with connection
ore given later in this chapter under "System Function
Call Formats”, ;

ARMING, DISARMING, ENABLING, AND DISABLING

These functions can be performed by the ARM, DISARM,
ENABLE, and DISABLE system function calls, which specify
on interrupt by number or iabel. As options on ARM and
DISARM, connection of the interrupt to a task can be per-
formed, and/or a clock can be set to interrupt at specific
intervals.

ARM, DISARM, ENABLE, and DISABLE functions can alsobe
performed by operator request through the CINT key-in.

TRIGGERING OF INTERRUPTS

An interrupt can be triggered through a TRIGGER system
function call. The interrupt to be triggered is specified by
number or by label. TRIGGER calls may be made from any
foreground task. An interrupt can also be triggered by op-
erator request through the CINT key-in.

END-ACTION

Primary tasks moy use end=action. Two types of end-action
are possible.

1. The user provides an end-action address in the FPT, A
transfer to this address will be made following the
completion of the service. This end-action transfer is
made by executing.

BAL, 11 end-action address

with the CPU in master mode, unmapped, and the post-
_ing level active.

Return from the end=action routine must be made by
B *11

It should be noted that since end-action may be per-
formed with the posting level high, any task whose pri=
ority is lower than that of the posting level is effec-
tively disabled for the duration of the end-action,

Since the end-action user can seriously degrade inter-
rupt response for lower priority tasks, it is strongly
recommended that this type of end-action not be used
for applications where other techniques are satisfactory.

2. The user FPT contains either an interrupt number or in-
terrupt label sp ecifying a system interrupt, The system
interrupt is triggered upon completion of the request.
The task connected with the specified interrupt then
performs the end-action function at the proper priority
level, The user is responsible for connecting the inter-
rupt and ensuring that it is armed and enabled.

Interrupt Control Vad

The triggering service sets o flag in the TCB to indicate
that the trigger has been performed. The EXIT routine in-
terrogates this flog before performing the EXIT for centrally
connected tasks. If the flag is set, the occurrence of the
interrupt (previously lort by the triggering of an active in~
terrupt) will be simulated. If more than one service com-
pletion can occur while a task is active (or prior to such o
task becoming active), the user is responsible for checking
all possible reasons for which on interrupt may have oc-
cured. (The flag bit in the TCB indicates one or more in-
terrupt attempts,) Directly connected tasks using this type
of end=-action must assume the responsibility for solving
problems of this type since there is no TCB in which a flag
bit can be set,

SYSTEM FUNCTION CALL FORMATS

The following system function calls should not be attempted
unless the user has been given control as follows:

1. Thebackground or foreground program loader has trans-
ferred control to the usjer' start address,

2, The user's centrally-connected primary task hos been
given control upon the occurrence of the associated
interrupt,

In all of the FPT formats which follow, an asteriskin bit 0
indicates thot indirect addressing is permitted, That is, if
bit 0 contains a 1, bits 15 through 31 contain the address
of the parameter rather than the parameter itself,

Whenever a return is made to an abnormal or error address,
the error or abnormal code will be in byte 0 of register 10
and the address of the location following the call will be

in register 8.

Calls for which F3 (wait indicator) is not available are
either immediate or synchronous. That is, control will
never be retumed to the caller until the service has been
completed (See Appendix I for more detailed information),
Primary task users should recognize that during any wait for
completion of the service all lower priority tasks are blocked,

If an error is detected in the call and no error address is
available, the situation will be handled simiiar to a trap
and the user will be aborted unless he has elected to do
his own trap handling.

KJoB This function coll is available only to foreground
and terminates a job by terminating every task in the job
and deleting the job controls. KJOB has the format

CAL},7 oddress

where address points to word 0 of the FPT shown below,

word 0
X'64' 1,0 0
[]

I N I) T 3

iz 13 w4 1stis 177 1 1

80 System Function Call Formats

word 1

" O 0/%l"[0 0"
uti:TAschI.r nury, 15 1 LR
optional (P1;

0 0 Error address

© 1t 2 3Te 5% 778 ¥ 12 1) a) 1 4 25 20 728 3
optional (P10)

Type compl.] 0 0
G AL O A R R R R A A R R R A R
optional (P11)

Job name

T T i T T T T T W e T St e e e

optional (P12)

Job name

where
Word 0

X'64' is the code for the KJOB call.

Word

P is the error address parameter presence indicator
(0 means absent; 1 means present),

P is the type completion parameter presence in-
dicator (0 meons absent; 1 means present),

P']/ P12 are the optional jobname-parameter pres-
ence indicators and are set to ones if a full eight-
charocter job name is supplied.

F is the abort override indicator. If set, control
will be returned to calling instruction +1 if errors
are detected and no error address parameter has
been provided.

Word Eﬁons

Error oddress (optional) is the locotiomdo return to
if errors are detected (see word 3 description for
completion codes),

Type compl. is set by CAL processing.

Job name is a four- or eight-choracter EBCDIC job
nome, left~justifiedand blank filled. If omitted,
the caller's job is terminated.

$J08 This function call is available only to foreground
ond creates a foreground job by setting up job controls ond
building a job control block. SJOB is an immediate service
that uses o standard FPT. It does not initiate any task within
the job; instead, RUN or INIT must be used following SJOB
to start a task. It has the format

CALYL 7 address
where address points to word 0 of the FPT shown below

word 0
X'63' 1{0 0
TT!]‘;‘T..WHTHIJMISIMl7|‘“m7|552¢”ﬂ177l2°53\

word 1
110 0(|1[%|0%0

P o ¥
[0l-
T 1 7 314 8 ¢ J18 ¥ 90 11715 13 14 157% 17 18 Wi 20 22 D4 25 3 D124 39 3 31

optional (P1)

0 0 Error address

9 1 2 318 5 6 710 0 momzuuisnnﬁnlnszElusiﬁﬁﬁﬁh'

optional (P10)

Type compl.| O OI
0 1 2 3T4 5 ¢ 718 % 10 NT1213 W6 15T 17 18 W20 2t % i

/f;quired P11

Job name

12 4 5 ¢] Nz 13 14 st 1] 6 N

optional (P12)

Job name

1T 2314 5 4 210 % W I R R TR N BB NEREDRREY

optional (P14)

PI 4 is the optional account and name porameter
presence indicator (0 means absent; | means pres-
ent) if omitted the callers account and nome ore
used

F7 is the abort override indicator. If set, control
will be returned to ealling instruction + 1 if errors
are detected and no error address parameter has
been provided.

Word options

Error oddress (optional) is the location to return to
if errors are detected (see word 3 description for
completion codes).

Type Compl. is set by CAL processing.

Job name ia s four- or eight=character EBCDIC job

name, left-justified and blank filled, This parom-
eter is required.

Account and nome address is the oddress of a five
word data block that contains the account and nome
to be associated with the JOB, The format of the
data block is shown below.

word 0

Ay A2 A3 A4
LA B A RO A A L R R A nlmm
word 1

As As A7 Ag
F T T T T e T TR T B W N e P R e T D B B R PIE R T
word 2

Ny N2 N3 Ny
(SR e 2 P B S B AT BB N MILIVE N WO R T ngﬁmm
word 3

*10 0 account name address
O B AL R R AL B R R P RO AR IR R L R R AL O i R
where
Word 0

X'63' is the code for an SJOB call.
Word 1

P] is the error oddress parameter presence indica~
tor (0 means absent; 1 means present),
PIO is the type completion parameter presence in-
dicator (0 means obsent; 1 means present),

P is the optional jobname-parameter presence in-
dicator and is set to one if a full eight~character
job name is supplied.

0 1 2 314 5 62

word 4

% 0 N2y ks

ERA WL O]

020X N

Nio

Niy

Ni2

T ¢ WUl n 45

TP SO T TR O]

423 2 T2 XN

A, are the EBCDIC charocters naming the account.
N are the EBCDIC characters il:\ the user name.

1f the account and/or the name information is zero or
blanks the callers account and/or name will be used
instead.

The SJOB CAL processor will validate the account and
nome against the Al file and if they are not found, will
return an error code of X'7B' for illegal or invalid at-
count or name,

System Function Call Formats 81

SETNAME This function call allows the user to give the

name of o lood module to be used for execution of a tesk.

SETNAME has the format
CAL1,7 oddress

where oddress points to word 0 of the FPT shown below,

word 0
X571 110 0
T T Ty e T T T T R T T i e iy
word 1
"{o]1[%|o[1{7{0]o]w{ |2l 0 ol
0 7 2 3T 5 & 7718 ¥ W NI I3
optional (P1)
0 0 Error address
B D YR R e AT BN AR RIS RERTII WA R I LR R R AL KA R
required (P3)
Task name

4 [1 2 13 4) il 2 1

optional (P4)
Task name

4 [MH2 13 6 15T 17 18 WIX 20 M2 XTIN 3t

required (P6)
Load module name

4 [11142 13 14 1506 17 18 F R M 25)

optional (P7)

Lood module name
T 4 314 5 6 718 % 1011 IZIJIll’lé"|.|’n2|ﬂ£“25‘v"”n)‘

optional (P10)

optional (P11)

Completion 0 0
code |
T 314 3 6 718 9 10 1111z 13 4 15T 12 18 (20 1 22 Te 15 % D - D

Job name
T T T Th T R T A N AR T ME N E BN S E SR A B Y
optional (P12)
Job name
1 4 3 ¢ INSFREET lt"‘l]]
where
Word 0

x'51 is the code for the SETNAME call.

82 System Function Call Formats

Word 1

Pl is the error address parameter presence indi-
cator (0 means absent; 1 means present),

P 4 is the task nome porameter indicator (0 means
absent; 1 means present). Only used if eight-
character task nomes are being given,

P7 is the load module name parameter indicator
(0 meons obsent; 1 means present). Only used if
eight-character lood module names are given.

4 is the completion code parameter presence
indicator (0 means absent; 1 means present),

P] I-Pl are the job nome parameter presence indi-
ca?ors (0 means absent; 1 means present). If four-
character job names are given Py] must be set, If

. eight-character job names are given both Pyj and
P12 must be set,

F7 =1 is the abort override indicator. If set, con~
trol will be returned fo calling instruction + 1 if
errors are detected and no error address parameter
has been provided.

Word options

Error oddress is the return oddress to process any
detected errors,

Task name is one or two words containing the 4 or
8 character (EBCDIC) task name whose lood mod-
ule equivalence is to be established. This pa-
rameter is required.,

Load module nome is one or two words containing
the 4 or 8 character (EBCDIC) load module name
that will be used to lood the task whose task name
is being specified. If load module name is all
blanks, then task nome specifies a prior equiva-
lence that will be deleted.

Completion code indicates completion status of the
function call.

Job name is one or two words containing the four-
or eight-character (EBCDIC) job namé in which
the specified task name/load module name equiva-
lence is to be made. 1f Job name is not present
the equivalence will take place in the caller's
job.

Tasks in progress ore not affected by load-module
name changes.

RUN This function call is available only to the foreground ’ é if invalid ottempt has been made to load a

ond initiotes a primary task in the CP-R job. It has the public library. Since public libraries are

format outomatically looded and released by the
Foreground Root Looder, they cannot be

CAL1,5 oddress loaded via a RUN call.

where address points to word 0 of the FPT shown below. 7 if no table space was available to load the
load module header. The caller may reissue
word 0 the call if desired.
X'0C' 0———20 Signal address The signal oddress cannot be a register (addresses
T T T T T T T R R T W RS T BN S R PR R 0 through F)and must be in the calling program's

portion of memory. An invalid signal oddress re-
sults in control being transferred to the System or

word 1

User Trap Hondler.

AL
I jolelr| Priority 0—0 Interrupt no./label The user should inspect the signal word upon re-
TII s eI I RN B NN G TR BT B BN B R DIRF B0 turn from the CAL, since some of the signals (3,4,
and 5) are posted immediately by the RUN processor.
word 2 .
Note that an interrupt is triggered only if the RUN
request is passed on to the Foreground Root Loader.
. 51 I — Szu - Es . . C4) That is, signals 3, 4, and 5 are returned immedi-
' > e =7 ately by the RUN processor and, in this case, no
word 3 interrupt is triggered.
Alarms are output by the Foreground Root Loader
Cc5 Cé c7 c8 for error conditions 1, 2, and é.
B R AR IORALE A RO B A A A R iR R -1 R R At . R
where Word 1
Word 0

1 indicotes the contents of the Interrupt number/
lobe! field (0 for no interrupts; 1 for interrupt
number; 2 for interrupt label), This interrupt is
triggered by the Root Loaoder at the conclusion
(successful or unsuccessful) of the root load and
initialization.

X'0C' is the code for the RUN call,

Signal oddress is the oddress of a status word into
which the system posts one of the followingsignals:

B if the program was successfully loaded. DBG causes the progrom to run under control of

1 if the space was not available in the fore- DEBUG.

ground-private memory area or if there was
insufficient space in the Load Module In-
ventory (LMI) table to make entries for the
public libraries needed by the program.

2 if the requested program did not exist in the
FP area of the disk or if an I/O error oc-
curred attempting to load the program.

3 if the progrom is already loaded.

4 if a previous request has been mode to load
the some program but the progrom is not yet
loaded. In this case, the Foreground Root
Loader is able to notify only the first re-
quester when the progrom is loaded.

5 if the space was not available in the Lood
Module Inventory (LMI)table for the requested

program.

Isp inhibits all status posting after the ottempt to
load the program.

PP specifies whether or not the priority of the RUN
request is present in bit positions 5 through 11. If
PP = 1, priority is present; if PP = 0, it is not
present.

Priority specifies the order in which the RUN re-
quest will be processed. The highest priorityis 0;
the lowest priority is X'7F'. -

Words 2-3

C. are the characters in the name of the load
module. The name is left-justified with trail-
ing blanks.

System Function Call Formats 83

RLS This function call (Release Primary Foreground Pro-
grom) is available only to the foreground and releases o pri-

mary task in the calling job. It has the format
CAL),5 oddress

where address points to word 0 of the FPT shown below,

word O
X'0B' 0 0
I AR ORAURE RO RO A B R U R A R
word 1
Ci C2 C3 C4
CREE B L AR AL N A AR - RS O X A dE
word 2
C5 Cé c7 c8
T T T T T T T T T T N T N N T T T NI R T S IR T
where
Word 0
X'08' is the code for the RLS call,
Words 1-2
C, are the characters specifying the name of the

program, The name is left-justified and filled
with trailing blonks. An invalid nome results in
a retum with no action taken by the system.

INIT This function (initiate o new task) causes the named

task to be read into memory and initiated. It has the format

CAL1,7 oddress

where oddress points %o word 0 of the FPT shown below,

word 0

X'48' 110—0 Area name
L BRI AT SN B R AS BN AR I INRIER NI 20N AN b oL iR AL B L
word 1
B A R e R — O G A CER B AR
C 1 231485 4778 °F N2 13 W 18w 37 4 235 % N J X]
optional (P1)
0 0 Error oddress
T T T T R T S R T W R T B R R AT
required (P3)

Task name
4 20w 1

84 System Function Call Formats

optional (P4)
Task name
4] 4 N
optional (P8B)
0 0 Priority
T T 37 § 4 7010 % R 112 13 15T 1 M5 0D 3
optiona! (P9)

optional (P10)

110 0| End-action address/no. I
O 1 2°3Ta $ ¢ 718 % % 13112 13 v 15016 17 8 WIX 21 22 23T 25 26 D1 »

optional (P11)

P on 1[0 0
completion |3
0V 2 dld 5 @ & % 10 N2 13 14 5T 17 18 19120 20 22 23724 25 26 27128 0 3

Job nome
1T 2 3Ta § ¢ 7760 9 30 1112 13 14 ISI‘ [} |i 5|D 7V 12 23724 25 2% 17'1.5 N
optional (P12)
Job name
1 [12 13] 1

optional (P13) -

Time interval

v TS T Bt v W #En ™ 0
optional (P14)
*0 0 account name address
T T T IS e T T T AR T AN DR R DI
where

Word 0

X'48' is the code to initiate the call.

Arec name is the optional EBCDIC name of o disk
file area for the load module. If Area name is oll
zeros, the disk orea is unspecified.

Word 1
P‘ is the error address parameter presence indicator

(0 indicates absent; 1 indicates present).

.

4 P is the optional task name parameter presence in-

dicator (0 indicates absent; | indicates present).

Pg s the priority parometer presence indicator
(0 meons absent; | meons present).

Po s the end-action oddress parameter presence in-
dicator (0 indicates absent; 1 indicates present).

P'IO is the type completion code parameter presence
indicator (0 means absent; 1 means present).

P”-P] are the job nome parameter presence indi-
oa?ors (0 meons absent; 1 means present),

Pl3 is the time interval porameter presence indi-
cator (0 means absent; 1 means present),

P is the account name address parameter presence
indicator (0 means absent; 1 means present),

FB is the delete on post indicator and signifies that
no check will be performed.
F]=0 execute after load.

=1 leave in suspended (STOP)state after load.

F2=0 task being initiated is primary.

=1 task being initiated is secondary.

F3 wait for the task to be initiated before retumning
from CAL. Wait may be specified from secondary
tasks only.

F‘=0 normal initiation.

=1 initiate under DEBUG control.

F5=O normal initiation,

=} task is to be time=sliced.

F5=1 is the abort override indicator. If set, con-
trol will be returned to calling instruction + 1 if
errors are detected and no error address parameter
has been provided.

Word options
Error oddress is the return address for errors.
Task name is the name of the task to be loaded and

initialized. It will be converted to o load module
name by lookup in the Job Program Table (JPT). A
nonmatch defaults to the task nome being used for
the lood module name (required).

Priority indicates the priority that is to be given to
the task being initiated. Priority is o four-digit
hexodecimal number the leftmost two digits repre-
sent the CP-R dispatcher interrupt numberminus
X'4F', the rightmost two digits represent o CP-R
software priority in the range X'0' = X'EF'. The
default priority is the caller's priority.

1, End-action address/no. I indicates the contents
of the End-action oddress/number field. End-
action is allowed only for primary foreground tasks.

1=0 indicates on end=action address,
=1 indicates on interrupt number,
=2 indicates on interrupt operational label.

Type completion and BUSY indicate status of an
initigte service. An initiote service is complete
when the load module has been looded and task
controls established.

BUSY=0 indicates service is complete,
=] indicates service is incomplete.
Job name is the four- or eight-character name of

a job in which the task should be initiated. The
caller's job is the default name.

Time interval is the maximum number of timerunits
allowed for the task initiation ond loading. If no
time interval is specified the service wiil not be
timed out.

account name address is the oddress of a two-word
data block that contains the account nome in
EBCDIC, filled to eight characters with trailing
blanks, If the account name is all blanks or numeric
zero, it is assumed fo be unspecified,

The defoult area and account nomes for INIT differ from those
of the other services, to provide compatibility to previous
behavior. ’

1. If neither account nor area name is specified, area FP
with a null account name is assumed, to provide back-
ward compatibility.

2, If the occount name is specified but the area name is
not, the file may be in any public area. (This is the
some default as for other services,)

3. If the area name is specified but the account name is

not, the system account name will be used. (This is the
same default as for other services.)

SCHED This function (periodically schedule atask) causes
an INIT call fo be issued to a named task, It has the format:

CALl,7 oddress

where address points to word 0 of the FPT shown below,
word 0

X'68' qo————O Area nome l
OI2Jl‘5‘7IOWII1|1IJIA|SMDIIWI 1 24 H Fd U

word] -
"{01"|"]0—0/’s[0[id" '13[‘4%0—-—;;-——0 "2[010[s|s]"7
Bt 2 dla $ 67180 i 13 14 W 17 2 2 2 nla XA E S

optional (P1)
0 0

Error oddress |
D) 2 314 5 & 718 % 10 N2 13 14 3506 17 18 19120 20 22 2425 % D28 2® XK I

optional (P3)

0 1 2 314 5 6 278 % 10 112 13 5T 17 10 n:x:lnnluzsuﬁﬁaw::

Task name

System Function Call Formats 85

optional (P4)

2 a ¢

optional (P8)

Task name

0 12 3 16 15Te 17 t 1

0

0 Priority

12 JFha S & 208 ¢ 6 1iT12 138 15008 17 1 Hl 4 1

optional (P10)

Type
com;reﬁon 0 0

0 t 2 Jla 56 200 O 1C NT12 13 14 2146 17 Il“&;‘nn?‘l!b’?n”mll
optional (P11)

optional (P12)

Job name

optional (P13)

Job name

4 0 [Tl 4 15The 171

*

Time interval

-]

b2 3T« S & 7018 5 90 N102 35 e i5The 17 18 W1 20 22 2512a 25 20 27128 29 X 3°

ptional (P14)

account name address

[-}

LB B AT B BN S A BN AR AR ASHERLERTERCINTUR PR N (A0 AR R 16 TR I TR AN L IR R A

ptional (P15)

Start time address

V23Ta 5 6 770 % 16 Tihig S 8 177 8T 0 22 DN B % 278 5 X 3

where

86

Word 0

X'é8' is the code to initiate the call.

Area nome is the optional EBCDIC name of a disk
file area for the load module. See "account name
oddress" description for default values,

Word 1

4 is the error address parameter presence indicator
{0 indicates absent; 1 indicates present),

P3-P4 are the task nome porameter presence indi-
cator (0 indicates absent; 1 indicates present),

P8 is the priority parameter presence indicator
(0 means absent; 1 means present).

P' is the type completion code parameter presence
indicator (0 means absent; 1 means present),

P11=Pj2 ore the job name parometer presence indi-
cators (0 means absent; 1 means present).

Py3 is the time interval parometer presence indi-
cator (0 means absent; 1 means present).

System Function Call Formats

P' 4 is the account nome oddress pt;rcnefer presence
indicator (0 meons absent; 1 means present),
P‘ 5 is the start time address porameter presence in-
dicafor (0 means absent; 1 means present).

F2 =0 task being scheduled is primary,
=1 task being scheduled is secondary.

F5 =0 normal initiation.
=1 task is to be time-sliced.

F6 =0 schedule the task.
=1 abort (delete) the scheduling.

F7 =1 is the abort override indicator. If set, con-
trol will be returned to calling instruction + 1 if
errors ore detected and no error address parameter
has been provided.

Word options

Error oddress is the retum address for errors,

Task name is the nome of the task to be loaded and
initialized, It will be converted to a load module
name by lookup in the Job Program Table (JPT). A
nonmatch defaults to the task name being used for
the load module name. A nonexistent field defaults
to the calling task.

Priority indicates the priority that is to be given to
the task being initiated. Priority is o four-digit
hexadecimal number, the leftmost two digits repre-
sent the CP-Rdispatcher interrupt number minus X'4F",
the rightmost two digits represent o CP-R softwore
priority in the range X'0' -~ X'EF'. The default
priority is the caller's priority,

Type completion indicates the type completion code
retumed by the SCHED call.

Job name is the four- or eight-character name of o
job in which the task should be initiated. The
caller's job is the default name.

Time interval is the period, in seconds, between
successive INIT calls for the task. If the value is
not on integral multiple of five, it is rounded up
fo the next higher integral multiple ok five, If this
porameter is zero or absent, the task will be INITed
once, at the specified start time.

account nome oddress is the address of a two-word
dota block that contains the account name in
EBCDIC, filled to eight characters with trailing
blanks. If the account nome is ol blanks or numeric
zero, it is assumed to be unspecified.

-
-

The following defoults pertain to the combinations of disk
area nome ond file occount name: ’

1. If neither account nor area nome is specified, orea FP
with a null account name iz assumed, fo provide bock-
ward compatibility.

2. If the occount name is specified but the area name is
not, the file may be in any public area. (This is the
same defoult s for other services.)

3. If the area nome is specified but the account name is
not, the system account name will be used, (This is the
same defoult os for other services.)

Start time oddress is the oddress of o two-word block
which contains the desired time of the first issue of
the INIT call. The start time block has the fol-
lowing format:

word 0

year (whole year) month

0 1 2 314 5 & 718 5 10 1171213 M 15106 17 38 I 21 22 23124 25 26 22128 2 X N

word 1

day hour minute second
T T T T T T TN S T T U R R T T NI T R TN T YT

Note that all fields are binary values in terms of
calendar date/time; hour is military (0-23), and
year iswhole year, i.e., X'7C1' (1985). A special

TIME call is provided, which retums date/time in
the above format to facilitote date/time calcula-
tions. Any field set to a -1 (all hexadecimal F's)
will defoult to the present time (at issuonce of

CAL) for that field.

If the start time parameter is absent or zero but the
time interval is present, the task will be INITed
periodically beginning at one period from the oc-
currence of the SCHED CAL.

INT This function is used to establish BREAK control in
the calling task's job., The call has the following format:
CALL 8

address

where address points to word 0 of the FPT shown below:

X'0E® 0—0 Address
T T Ty T T N B T R T IR T R UiIR YT

where
X'0E' specifies the INT function,

oddress is the address to which control will be
transferred when a BREAK function is received for
the caller's job. If this field is zero, ony pre-
vious BREAK control will be removed.

Note that the user-stack orrangement of registers and PSD
is identical to that used for the TRAP service calls, The
Trap Retry (TRTY) call is used to return from the BREAK
control processing routine, since the interrupted instruc-
tion is not executed before the interrupt occurs,

PC This function is used to set the prompt character for
the job. The default is no prompt. The call has the follow-
ing format:

CALl, 1 address
where aoddress points to word 0 of the FPT shown below:

X'2C' 0 O Character I
O 1 2 314 s o 778 9 10 11112 13 14 1510 7):"?0“!5732‘25?6 2128 20 X 3

where
xX'2c! is the code for the PC call.
choracter is the prompt charocter to be output when
an input request is received for the terminal. Ii-
legal EBCDIC characters and lower case ANSCII
characters are not cliowed.
EXT™M This extenal task termination function allows one

task to terminate onother, It hos the format

CAL1,7 address
where oddress points to word 0 of the FPT shown below.
word 0

X'49' 1{0 0
T I T T T T VB T DM SR NS T BN E RO RE R
word 1
"Jols |+ o—0[%[1[+0 olf,!o—o[f,
T 2 31e 5 & 778 & 20 11112 13 W4 15T 7) t E<) ED
optional (P1)
0 0 Error oddress
L I R N A A A LI A L N AR O B AR T TR A R
optional (P3)
Task name
T “ [}] 112 1 6 W v 3724 T
optional (P4)
Task name ’
O 1 2 304 5 6 278 9 10 11112 13 14 15116 17 18 191X 21 22 D724 23 26 DI 3 X '
optional (P10) -
. L]
Type
completion 0 0
T 2314 8§ 6 210 ¢ VI 3 M STWw Y BRIX 212D a0 EERD

optional (P11)

Job name
vty T T e T ST e R R T T

System Function Call Formats 87

optional (P12)

Job name I

where
Word 0
X'49' is the code for the EXTM call,

Word 1

3| is the presence indicator for the error address
parameter (1 indicates present; 0 indicates absent),

P3-P4 are the presence indicators for the task name
parameters (1 indicates present; O indicates absent).

Pio is the presence indicotor for the type completion
code parameter (1 indicates the type completion
code is to be posted; 0 indicates no posting).

P11-P12 are the presence indicators for the job
name parameters (1 indicates a job name is speci-
fied; 0 indicotes a job name is not specified),

F is the abnormal termination request (0 means do
not abort the task; 1 means abort the task).

F7=1 is the abort override indicator, If set, con-
trol will be returned to calling instruction + 1 if
errors are detected and no error address parometer

has been provided.

&ﬁons

Error address is the return location if errors are
found,
Task name is the name of the load module for the

task to be terminated, The caller's load module
name is the defoult name, All tasks in the same load
module are terminated.

Type completion

Job name is the name of the job in which the named
task is being executed. The caller's job is the
default name.

set by CAL process table,

SIGNAL Send data to ancother task. This function call
allows a task to communicate and post data to another
task. It has the format

CALL 7
where address points to word 0 of the FPT shown below:

address

word 0

X'43' 110 0
T T ITe T eI F Wt 314 Bl 1 T P X
word 1
» vieleleielelrle|eie (10 ¥ ¥
1|01} <] 5] o 7| o] o] & n}1213| 0 =——————=0]'s| 0} O 3}0—0}"
T <5 6 7 T T 13 18 151w 7 T8 BN £l

88 System Function Call Formats

optional (P1)

0 ———em— O} Error address
B B 3 CNE N 3R AL AL BRI RO N A A IR L T TR R A R

required (P3)

Task nome
4 [] 1HER 13 W 1stie 0 o 2 425 i »® 0N
optional (P4)
Task name
optiona! (P5)
0 0 Class
1 FAK] s 7 II|\2|JIII5|‘I7I."wl‘uuﬂzﬂn”ls”nll

optional (P6)

0————0 Signal data areo

LEREE B A BORALE 12 Woishie ¥ 1 N

optiona! (P7)

Length

Feedback data area l
V1 2 314 5 ¢ 7218 9 W0 N2 13 14 1w 12 1 25 Ell

optional (P8)

0 0 Priority
12 4 [(L) 1] M 25 Ell
optional (P9)
1 End-action

01 2 374 5 & 7 . 2 Woishe 7 e o0 R Ell

optiona! (P10)

<nCe

Type compl. Completion status
IR AL B R AT 3 A R PR R RO B R IR AT T R A

optiona!l (P11)

Job name
T 0 0 0 11112 13 14 15116 17 v V25 ER

optional (P12)

Job name
) 4 6 718 10 11612 13 Ve 15T16 17 18 19120 21 22 23124 25 26 128 2% 0 1)
-
optiona! (P13) -

Time interval

n 13 14 Bl

v 2 314 5 ¢ 718 9

where
Word 0
X'43' specifies the SIGNAL call,

R RN

Word 1

P is the error address parameter presence indicator
(O means absent; 1 means present),

4 4 is the task name (second word) parameter presence
indicator (0 means absent; 1 means present),

Ps is the class parameter presence indicator (Omeans
absent; 1 means present),

Pg is the data area address parameter presenct in-
dicator (0 means absent; 1 means present),

P, is the feedback data areo address parameter
presence indicator,

Pg is the priority parameter presence indicator
(0 meons absent; 1 means present).

Pg is the end-action parameter presence indicator
(0 means absent; 1 means present).

P10 is the type completion parameter presence
(0 means absent; 1 means present).

P11-P12 are the job name parameter presence in-
dicators (0 means absent; 1 means present),

P13 is the time interval parameter presence indi-
cator (0 means absent; 1 means present),

F is the delete on post indicator. Indicates that
no check will be performed.

Fo=l is the long wait indicator, Ifset, the calling
task will be made a prime candidate for roliout.

F is the wait indicator. If set to 1, the calling
task will wait for a post of the SIGNAL service,

F7=1 is the abort override indicator, If set, con-
trol will be retumed to calling instruction + 1 if

errors are detected andno error address parameter
has been provided,

Word options

Error address on calls with wait, error address is
the return for all error completions. On calls
without wait error is the return address for im-
mediate errors,

Task name is the name of the task being signaled.
Default is the caller's task.

Class is a class bit mask. Default is X'FFFF'.
Class is used to separate different types of signals
to a signaled task. It is used in conjunction with
a similar class bit mask supplied with the POLL
service, The signal is only occepted if one or
more one bits in the two class masks compare.

Signal dota area is the address of word 0 of a data
area to be made available to the signaled task,
The data area format is as follows:

_wordl

Length=n Reserved I
T 4 314 8§ & 718 9 10 1012 13 14 151w 17 18 WX 212 0D1HB DI 0N

word 2 (user defined orea)

T T T T T T T T N T T R T T I T S R Ui Y T

word n (user defined area) :

Lﬂﬂ—ﬁwmmm

where length n is the number of words (from 1-127) in the
data area. Short data areas are recommended.

Length and feedbock data area address the number
of words and first word address of an area avail-
able for receipt of any data sent by the signaled
task ot POST time. The area will be in the same
format as the Signal data area above, with the
number of data words returned given in the first
byte. If the feedback area is smaller than the ~
passed data area only the number of words speci-
fied in this word of the SIGNAL FPT will be
moved. The remainder of the data is lost.

The feedback data is stored on return from aSIG-
NAL with wait (F3=1) or upon return from a CHECK
of o completed SIGNAL.

If no feedback option is used, any passed data is
discarded.

Priority is the priority of the SIGNAL. Used on
POLL's to control the order of input tothesignaled
task. Default is the caller's priority.

1 and End-action is the primary task end action op-
tion, as follows:

1=00 end oction is an address for POST to BAL
to.
=01 interrupt address to be triggered by POST.

=10 interrupt iabel to be triggered by POST.

Type completion, BUSY, and Completion status:
BUSY=1 if service is in process.
=0 when the service is complete.

Type completion and completion status is set by
the signaled task. If the completion word is not
provided, the type completion and completion
status are not available to the signaling task.

Job nome s the four- or eight-character name of
the job to which the signaled task belongs. De-
fault is the caller’s job. -

Time s the maximum number of seconds to be al-
lowed between the SIGNAL and completion of the
service. If a time interval is not provided, the
service will never be timed-out.

The signaled task must exist at SIGNAL time. Standard
CHECK calls are used with SIGNAL without wait.

System Function Call Formats 89

POLL Request rmopf of dota from onother task. This
function call requests the input of the highest priority SIG-
NAL. It has the format:

CALY,7 oddress

where address points fo word 0 of the FPT shown below,

Word 0
X'45' 1 SIGNAL identification
T T Y T T R R T R T O T S oA T YT

t

word 1

P

L4] 4 F
lo—ol%lol(o loe— 0 o_i,]
LR - AT S S A N T T T M T BN SR AN

o™
(=]

™
)

o
-2
o

optional (P1)

0—0

TTITSrCTTY

Error address

10 NT2 10 14 15t 37 ¥ 1

optional (P5)

0 0 Closs mask
T I T T T R T T T N R T A R T R T RN YT
optional (P7)
0] Length * Data area address l
0) 2 314 5 6 778 9 30 NHIZ 1Y 14 1571 17 08 W] ¥ El
optional (P9)

I 0Q——0 End=-action

I AR AU A RN U A AT AL AL U R AR R R A R
optional (P10)

3
Type compl, ‘5 0 0
V2 3143 6778 0 11112 13 14 15016 17 1§ 19120 21 24025 26 D128

optional {P13)

Time Interval
’ 4 5 6 (] 0 1EI2 13 4 15T 17 18 WX 21 DWW 22 D8 ¥ X I

where

Word 0
X'45' specifies a POLL function.

SIGNAL identification
quent POST.

stored by CP-R for subse-

Word 1

Py is the error address parameter presence indicator

(0 meons absent; 1 means present).

90 System Function Call Formats

PS is the class parometer presence indicator (Omeans

obsent; | meons present), ’

P is the data area oddress and length parometer
indicator (0 means cbsent; 1 means present).

P is the end action parameter presence indicator
(0 means absent; 1 means present).

P1o is the type completion parameter indicator
(O means absent; Imeans present).

P13 is the time interval parameter presence indica-
tor (0 means absent; 1 means present).

Fo=1 is the long wait indicator; makes secondary
task o prime candidate for roll-out.

Fa=1 immediate POLL only. If set, on attempt is
made to satisfy the POLL with a matching SIGNAL.
If no match is found, an error code is returned and
the service is completed.

F3=1 woit for SIGNAL.

F.=} fs the abort override indicator. If set, con~
trol will be returned to calling instruction + 1 if

errors are detected and no error address parameter
has been provided.

Word options

Error address is the location to retum to if immedi~
ate errors are detected. Used for all errors on
POLL ;o”s with wait.

Class mask is a bit pattern for selective polling.
The mask is logically ANDed with the class field
in the signal. If the result contains all zero, the
signal is not selected. Thedefault is X'FFFF'.

Data area oddress and length is the length ond loce-
cation of an area where any data ottached to the
signal will be stored. A maximum of 'length' words
will be moved, the format of which follows:

word 1
0| Length=n Reserved
23145 6 770 Y] » EXl
word 2 (Data from signaling task)
ar d

4 ["IZII‘I.IOI 1 M 25 A2 XD
word n (Data from signaling fask)

4 [L) N I2WY 1 ” x 3

The length in the data area is the actual length
ottached to the signal. (Length is from 1-127.)

-

1 and end-action
follows:

s the primary task end action as

1=00 end action is a BAL oddress to use when
a SIGNAL is received.

=01 interrupt oddress to be triggered when o
SIGNAL is received,

=10 interrupt label to be triggered when a
SIGNAL is received,

Type completion and BUSY is es follows:

BUSY=1

=0 if service is complete,

if service is in process.

Time interval
lowed to satisfy the POLL. If no time is provided,
the POLL will not be timed out.

Standard CHECK calls are used with a POLL, The SIGNAL
identifier in word 0 is used by CP-R on the POST to locate
the SIGNAL to be posted, and must be providedon the POST
call by the signaled task, Subsequent POLLs will not cause
the saome SIGNAL to be delivered.

When o SIGNAL occurs, the POLL call will be posted (but
not the SIGNAL). If the level of the polling task is equal
to or greater thon the signaling task priority, the signal-
ing task will be interrupted and the polling task dispatched.

POST Posts the completion of a SIGNAL service. The
function has the format

CAL1,7 oddress

where oddress points to word O of the FPT shown below:

word 0

X'46' 1 SIGNAL identification

T T T T I O AR T A E T e RS B OIR S X5
word 1

12

10

N owv

P 4 TP PP F
4050—' lD" 0 07

A I
314 5 6 718 9 3 11112 13 14 15Tie 17 18 9T 1 F ® 3

optional (P1)

0——0 Bror address
1T 2 314 S ¢ 7270 ¥ lomuuuulnﬁlinlﬁ!»nﬁ)-:sﬂﬁﬂﬁi:l

optional (P3)

Task name

1 2 JTa S 6 778 % 10 111121 14 1576 17 18 wrmzlﬁﬁaigflﬂann

optional (P4)

Task name l
°\23]‘5b?'.’lonlliul‘l?fll)l.”(w?l » El

is the maximum number of seconds al-

optional (P6)

0 Data area address

T\ 2 Jfa % ¢ 208 9 10 11112 13 1 1516 17 18 ¥I20 21 22 23724 25 28 n % 1

optional (P10)

Completion status

[]
Type compl. S
3

T T T T T I B U B e T AR T E DR B e DR RS
optional (P11)
Job name
T 234 5 8T8 T RN B R TR Rl SRR SRS
optional (P12)
Job name
I AR R AL B R R NS BAE iR LR R A N
where
Word 0

X' 46 specifies the POST function.

SIGNAL identification specifies the SIGNAL to
be posted and must be provided by the caller from
the POLL service.

Word 1

P is the error address porameter presence indicator
(0 means absent; 1 means present).

P3~-P4 are the fask name porameter presence indi-
cators (0 means absent; 1 means present),

P P is the data area address parameter presence in~
dicator (0 means absent; 1 means present).

Pyo is the type completion parameter presence in-
dicator (0 means absent; 1 means present).

P11-P12 oare the job name parameter presence indi~
cators (0 means absent; 1 means present).

Fz=1 is the abort override indicator. If set, control
will be returned fo calling instruction + 1if errors
are detected ond no error address parameter has

been provided.
Word options -
Error address is the location to return on errors.

Task name s the four- or eight-character name of
the task to which SIGNAL was sent. Default is
the caller's task. This option allows the user to
SIGNAL fosk A, poll from task B, but post from
another task, e.g., task C.

System Function Call Formats 91

Data orec address is the location of feedback data.
Data orea format is o follows:

word 1

0| Length =n Reserved

D % 2 314 5 & 710 ¢ N2 13 e 15i e 3 1 +
word 2 (Dota to signaling tak

FT T IS s T v o DN e TR T TR NER BN YT

word n (Data to signaling task

T T T3l s e T v ol RN T W R NS R oTAR S
Length, in words, is from 1-127,

Type completion, BUSY and Completion status is os
follows:

On entry BUSY must be 0, meaning service
complete,

Type completion is the code to be posted in the
signal and eventually back to the signaling tesks
FPT type completion word. If the Type completion
word is absent, a code of X'01' will be posted in
the signal.

Job name is the four- or eight-character nome of
the job in which the task in P3, 4 resides. Defoult
is the caller's job. Job name is not used if P3, P4
are zero.

POST is on immediate service and does not use CHECK calls.
Users should avoid completion codes FO-FF which are used
for special purposes by CP-R.

ENQ Obtain the right to use o controlled item. The
ENQ function allows tasks to gain exclusive or shared ac-
cess to a controlled item. The item is user defined ond
could be a table, a piece of equipment, a file, or anything
which for logical or physical reasons cannot be used by two
tasks at the some time. The coll hos the format

CALY,7 oddress

where address points to word 0 of the FPT shown below.

word 0
X'4C' 10 0
T T T e T T RN N e e T A RS BN SRR RE

word 1

tlola|1] o—ofliJdo oftlo ————o[t[{J3l5lo o]
1 3 31¢ 5 o J16& O W ili2 13 s ishhe 17 18 1 » 3

92 System Function Call Formats

optional (P1)

0—0 Error oddress
0 1 2 J74 § ¢ 710 1 16 151 ' 4 o ELl
required (P3)
Controlled item nome
I 2 A N 3N AL B B B AL S A L D T R AT WO T A

required (P4)

Control item name

optional (P8)

© 1 2 314 35 ¢ 716 ¢V Rz 10183l D18 M0 82 DT e RN ®

0 0 Priority

YT YT T T T T T T T R T T B T R Iy
optional (P9)

I p—o0 End-action

optional (P10)

Type compl. 'go 0

0 1 2 3Ta 5 & 7 J N2 93 14 asTie 17 8 W20 2y 22 23724 25 20 27 XN

optional (P13)

Time interval

T T aTe T e TN T BT T N A e T AR T Ol s DTRAR K

where
Word O

X'4C' specifies the ENQ function,

Word 1|

P is the error address parameter presence indicator
(0 means absent; 1 means present).

P is the priority parometer presence indicator
8
(0 means absent; 1 means present).

P is the end-action parameter presenae indicator
14
(0 means absent; 1 means present).

Pio is the type completion parameter indicator
(0 means absent; 1 means present).

Pi3 is the time interval porometer presence indi-
cator (0 means absent; 1 means present).

AR

Fo =1 ‘ isalong woitoption making the tesk o prime
candidate for roll-out.

Fy =1

=0 is o job-level controlled item.

is o system level controlled item,

F,=1 is on immediote acquisition option. If the
resource is not available the service retums to
caller with an error.

F3 =1 is the wait indicator for completion.

F4 =1 is a shared ocquisition.
=0 is on exclusive acquisition.
F7 =1 is the abortoverride indicator, If set, con-

trol will be returned to calling instruction + 1 if
errors are detected and no error address parameter
has been provided.

Word options

Error oddress is the location to return fo if immed-
iate errors are detected, Also used on all errors
on ENQ calls with wait option,

Priority is the relative priority of the request, = o
hardware and software priority. Default is the
caller's priority level. Priority is used only when
multiple ENQs are outstandingon @ controlled item
when it is DEQed.

1 ond end action
follows:

is the primary task end action es

1=00 end oction is a BAL oddress to use when

the ENQ is posted,

=01 end action is an oddress to be triggered
when the ENQ is posted.

=10 end action is a labe! to be triggered
when the ENQ is posted.

Type completion and BUSY is as follows:
BUSY =1

=0 if service is completed.

if service is in process.

Time interval is the maximum number ofseconds that
the caller will wait for the ENQ to be satisfied. If
not specified, the ENQ will not be timed out,

After g caller is given a normal type completion on on ENQ,
he must DEQ or his acquisition will remain until his task
terminates.

Once a shared acquisition has been made, additional shared
acquisitions will be allowed, while exclusive acquisitions
will be queued awaiting o DEQ by dll shared users. Once
on exclusive ENQ has been queuved, only higher priority

shored ENQs will be allowed to acquire the device. Exclusive
acquisitions always cause all following ENQs to be queued
for posting when the item is DEQed. Standord CHECK catls
are used with ENQ, '

DEQ Relese the right to use a controlied item. This

function call allows the caller to release control of a pre-

viously acquired controlled item, and has the format
CAL1,7 oddress

where oddress points to word 0 of the FPT shown below:

word 0
X'4D* 1j0 0

1 2 3la 5 6 718 W0 11112 13 e 1sTe L] i I} 7126 25 X)1
word 1
viof1[1jlo——0]%y0 o{" |0 ol

T3 314 85 ¢ 71 6 112 13 14 1518 17 1 T BRDBD X
optional (P1)

0—0 Error address

1T 2 3T4 8§ & 7 2 7] 1] N 3 [T
required (P3)

Controlled item name

1 4 5 6 M2 13 4 5086 17 18 x ™ 2in 3N
required (P4)

Controlled item name

1 ITe 5 o 0 MEI2 13 14 15T 17 18 19 1 23124 725 20 D128 x 3
optional (P10)

Type compl. |0 0
B R O N AL A B R TN I AL RS R LT O T AL
where

Word 0
X'4D* specifies a DEQ call,
Word 1

P‘ is the error address parameteg presence indica-
tor (0 means absent; 1 means present),

Pio . 8 the type completion parameter presence in-
dicator (0 means absent; 1 means present),

Fi=1 is o system level controlled item.

=0 is a job level controlled item,

System Function Call Formats 93

F7= 1 is the abort override indicator, If set,
control will be returned fo calling instruction + 1
if errors are detected and no error address param=~
eter has been provided.

Word options

Error address is the address fo return to if errors
are detected on the service call,

Controlled item name is the eight-character name
of the item being released. It must previously
have been ENQed successfully.

Type completion contains the code describing the
disposition of the service, including any error
codes.

DEQ is en immediate service and is not subject to CHECK.

DEQ automatically posts the highest priority waiting ENQs
which con be satisfied.

TRAP This function call has the form
CALL S8 address

where address points %o word O of the FPT shown below.

word 0
X4 0—0 Trap address
© v 2376 5 6 718 9 10 NNN12 13 14 15T 17 W FF]] M 25 El
word | :
win [W N [+]
uleleloiefu ulrlF12]e | ole ol
08‘615951488;5?5){‘ E[x £ [
V2 314 5 6 778 9 10 12 13 04 15118 17 8 9] 1 23134 25 26 '8 0 3
Nem—— S g—
Abort Trap Permit Ignore
where
Word 0

X4 is the code for the TRAP call.

Trap address is the oddress in the user progrem that
receives the requested traps. The address is op-
tional unless it is the initial call and one of the
trap bits is set. The address must lie in the call-
ing program's portion of memory.

Word 1

Bits 1-8 are the Abort flags specifying which traps
are to be handled by the system,

Bits 9-16 are the Trap flags specifying which traps
are fo be handled by the user's trap handler.

Bits 22-23 are the Permit flags specifying thot the

decimal or arithmetic mask in the PSD is fo be set
so that these traps are permitted.

94 System Function Call Formats

Bits 30-31 are the Ignore flags specifying that fhe
decimal or arithmetic mask in the PSD is to be set
so that these traps are ignored. :

The Abort, Trap, Permit, and knore fields specify the
changes to be made in the dispositionof trap occurrences.

The bits in these fields have the following significance:

UA User Task Abort (X'50')
wDG Watchdog Timer
NAO Nonallowed operation

V)] Unimplemented lnstruction
PS Pushdown stack limit

FP Floating=-point arithmetic
DEC Decimal arithmetic

FX Fixed-point arithmetic

If a control bit has value 1, the trap is to be handled as
specified. Avalue of zero specifies that no change isto
be made in the handling of that trap. The fields are pro-
cessed from left to right (Abort, Trap, Permit, Ignore),
with the last-processed code overriding any previously
processed code,

If a given trop condition has a control bit value of 1 in
both the Abort and Trap fields, the Trap bit will over-
ride the Abort bit and the user will receive the trap,
since the Trap bit is the last one processed,

JTRAP This function call allows the user to specify job
level trap controls, The call has the format

CAL1,7 oddress
where address points to word 0 of the FPT shown below

word 0
X'5D* 0—0 Trap address
T T s e s e T v Wi w BT e T £l
word 1
|~ D wiN D) D
U|PLF Flu U{P|F Flu F F
O1RiAlT S|P |E xial2laT]5{PiE {x]a £ 1
01 2 314 S & 7018 % ¥ 11112 13 14 1570 1 i NBRDAdX Y
— Jd 22 —-—
Abort Trap Permit Ignore
where
Word 0

X'5D' is the code for the JTRAP call. 4

Trop address is the address of the user's trap handler,
The address is optional unless it is the initial call
and one of the trap bits is set. The address must
lie in the calling lood module portion of memory
ond will be used for all traps from within the job,
Separate trap addresses are maintained for primary
ond secondary tasks within a job.

[—

—

Word 1 TRTY The trap retry function call is of the form

Bits 1-8 ore the Abort flags specifying which traps CAL1,7 oddress N

are to be hondled by the system. :
where address points to word 0 of the FPT shown below
Bits 9-16 are the Trap flogs specifying which traps

are to be hondled by the user's trap hondler, word 0
Bits 22-23 are the Permit flags specifying that the X'5E" 0
decimol or arithmetic mask in the PSD is to be set 0
. 7 T TR IR T AW T T RN S SRR RS
so that these traps are permitted. Note that the N AL rxs
callers PSD is the only one affected. This function returns to the instruction that trapped for re-
try. This con be used if the user feels he has corrected
Bits 30-31 are the Ignore flags specifying that the the problem in his trap handler.
decimal or arithmetic mask in the PSD is to be set
so that these traps are ignored. Note that the
callers PSD is the only one affected. TEXIT The trap exit function call is of the form
The Abort, Trap, Permit, and Ilgnore fields specify CALY 7 oddress
the chonges to be made in the disposition of trap
occurrences, where address points to word 0 of the FPT shown below
The bits in these fields have the following significance: word 0
UA User abort X'5F! 0 0
wDG Watchdog Timer A A EORAU R BUC R RN B2t O 7R - 1 T i R AL I
NAO Nonallowed operation This function performs an EXIT from within a trap handler
Ul Unimplemented Instruction routine. For secondary tasks, this will result in o STOP
function.
PS Pushdown stack limit
FP Floating-point arithmetic TRTN This function call (frap return) is of the form
DEC Decimal arithmetic CALL? 5§
FX Fixed=point arithmetic No FPT is used. Return is to the trapped instruction + 1,
If o control bit has value 1, the trap is to be haondled EXIT This function call is of the form '
as specified. A value of zero specifiesthat no change CALLLS 1

is to be mode in the handling of that trap. The fields
are processed from left to right (Abort, Trap, Pemit, No FPT is used,
Ignore), with the last=processed code overriding any

previously processed code.

For secondary tasks this call causes termingtion, and for
primaries it exits ond clears the interrupt level.

If o given trap condition has a control bit value of 1
in both the Abort and Trap fields, the Trap bit will
override the Abort bit and the user will receive the EXDA

: N The Exit Disormed function eall, available to
trap, since the Trap bit is the last one processed.

primary tasks only, has the form

The user abort bit UA is used in conjunction with the CAL), 9 X'A’

other bits. If o condition occurs that couses an abort

(such as o trap handled by the system) the user will No FPT is used.

pet control after the error messages but before the

abort sequence. This will allow him to try a re- EXDA performs like an EXIT except that the primary task's
covery procedure. The trap oddress (X'40', X'41', interrupt is left in the disarmed state. «

efc.) is placed in the top word of the user's tosk. -

The user abort will occur for all traps, incorrect calls !

(trap X'50'), and other major problems. If the user's TERM This function call is of the form

recovery has been successful, he can continue exe-

cution; if not, he can abort the trapped tosks. The CALLY? 8

user shall take care -to determine thot his recovery

has been successful since CP-R will allow o retumn on No FPT is used, If the call is given by a background
an unsuccessful recovery. program, control is retumed to the Job Control Processor,

System Function Call Formats 95

If the coll is given by a foreground program, the program
is terminated.

ABORT This function call is of the form
CALY, 9 3
No FPT is used.

CONNECT,ARM,DISARM,DISCONNECT
tion, Deletion, Start, ond Stop)

(Primary Task Crea-

These functions connect a task to an interrupt level or o
processing routine to a CAL2, 3, or 4; arm on interrupt
level; disarm an interrupt level; or disconnect a task from
an interrupt level or CAL processing routine. The task
associated with the affected interrupt need not be in the
same load module or job as the task executing the CAL.
The calls have the format

CALL S oddress

where address points to word 0 of the FPT shown below.

word 0
PiPLP Fl1

Code Ofs{e|7{00| 72| Int, addr./labe! /CAL addr.
0 1 2 3iée 5 & 208 9 10N nuuxsununlzozlzznlnzshﬂnrm:\
word 1

Tiolcliie|mlola
PPl P
V|2 3fE T[T r s mim NR TCB address
T T s s T T T T R R TR R TR SR B R TR RS T

Note: Bit 3 of word 1 can be either Al or DE.

optional (P1)

l;egisfer block |0————0]| XPSD address/Start address
T YT T T Y T T T T T ST Y R TR

optional (P2)

MTW msh'uchon/Clock value

[} ¢ o 161 3

optional (P3)

0 0 Error address
LR B R X B BRAL NS AR IIAE B MU LS SR F I Rt T AL B R

optiona! (2 words) (P5 in word 0)

Task name

112 13 14 15T Ll 1 31

Task name

N2 13 1w 15l Ll 1 1

1T 2 3ta 5 o

96 System Function Call Formats

optional (2 words) (P6 in word 0)

Job nome

V1 2 3Ta $ 4 7709 IO)I1IZIJIllﬂu|7Il“7°7‘15232435h17l”7°x!‘

Job nome
’ 4 (] 1112 13 e 15T 1 1 2124725 26 7T » 0 3°

optional (P7 in word 0)

Type
completion |0 0
O 1 2 374 5 6 T 9 10 11712 13 14 15146 17 \§ 9130 21 27 nu!sunnr:;{

where
Word 0

Code X'03' specifies DISCONNECT or DISARM;
X'04' specifies CONNECT or ARM.

PS is the Task name option presence indicator.
P 6 is the Job nome option presence indicator.
P7 is the Type completion presence indicator.
F=1 is the abort override indicator. If set, control
will be retumed to calling instruction + 1 if errors
ore detected ond no error address parameter has
been provided.

indicates that the address (I = 0), or the label
Iz = 1), of the interrupt is specified in Interrupt
oddress/label.

Int. oddr./label/CAL oddr. is the hexadecimal ad-
dress for the interrupt or CAL.

Lobel is the two-character EBCDIC nome for o

label.

Word 1

P] is the CONNECT ond DISCONNECT indicator.
If the service is CONNECT, P1 also is the XPSD/
Start address parameter presence indicator. If
P1 = 1, aconnection ordisconnection is performed;
if Py =0, an ARM or DISARM is performed. Py
must = 1 if the oddress isthat of a CAL2, 3, or 4

Py isthe MTW/clock value parameter presence in-
dicator (0 means absent; 1 means present).

Py is the error address parometer presemce indicator

(0 means absent; | means present).

Al' when connecting a CAL, indicates that the od-
dress increment option on a CAL is desired. In this
case, the entry address will be the contents of the

'Bit 3 of word 1 can be either Al or DE.

R field from the CAL odded to the user's stort
address, Therefore, the user must provide o
16-word table of entry points at the start oddress
on the basis of one per R value,

DE when connecting an interrupt, specifies that
the interrupt is to be disabled (DE = 1), or enabled
(DE = 0). This parameter is only used on ARM
ond CONNECT to an interrupt.

DI specifies that the connection is to be direct
(D1 =1) or central (DI =0),

Cl specifies that the task is to be entered with the
clock group inhibit set (CI = 1) or reset (CI = 0).

II specifies thot the task is to be entered with the
/0 group inhibit set (Il = 1) or reset (11 = 0).

El specifies that the task is to be entered with the
external group inhibit set (E1=1)or reset (E1=0)."

MS specifies thot the task is to be entered in
master mode (MS = 0) or slave mode (MS = 1},

DM specifies that the task is to be entered with
the decimal mask set (DM = 1) or reset (DM = 0).

AM specifies that the task istobe entered with the
arithmetic mask set (AM = 1) or reset (AM = 0).

NR is the number of registers to be saved upon oc-

currence of the interrupt (if connection is central).

Value 0 is used to denote that 16 registers are to

be saved. Registers are saved beginning with reg-
ister Oand at least four registers must be saved. If
a task uses CALls, registers through R10 should be
saved in case error exits cause RB and R10 to be

altered.

TCB address contains the TCB address for central
connection, For direct connection, this portion
of word 1 is unused, For interrupt, the TCB
should be 26 words long. Central CAL connec-
tions need an eight-word TCB. The TCB address
must be o doubleword address.

Word Options

Register block is the register block pointer to be
used by the task when o central connection is

'Bit 3 of word 1 can be either Al or DE.

specified. The specified register block pointer
is in the PSD used to enter the task. The effect
Is the same os if the task executed LRP instruc-
tions ot entry and exit, The context saving ond
switching prior to task entry and af-er the task
EXITs is always executed using register block
zero.

XPSD/Start address if the tosk is directly con-

nected, this word is the oddress of the XPSD
instruction to be used to enter the task. The
XPSD instruction furnished will be stored in the
interrupt location by the CONNECT function.
If the task is centrally connected, this word
contains the start address of the primary task.

MTW/Clock value is the value (in units of the

clock's resolution) to which the clock is to be
set in the case of a centrally connected counter-
equals-zero interrupt. An MTW =1 instruction
will be used to decrement the value furnished.

For directly connected, counter-equals-zero in-
terrupts, this word should contain the octual
Modify and Test Word instruction which is to
be stored in the corresponding count pulse lo-
cation. For both types of connections, a clock
parameter is required unless the interrupt is be-
ing reconnected (i.e., is connected when the
CAL is initiated). In this case, no change will
be made to the clock pulse interrupt location
if P2 = 0.

Error address is the entry address to the user's error

handling routine if the monitor encounters any
error in processing the call and is unable to com-
plete the requested function. If no error address
is provided, 'trap 50' is simulated. Error oddress
will be used for all returns but nomal. A type
completion option can be used to determine the
exact error source.

Task name is the name with which the task is to be

associoted, and must occupy two words. The task
will use the PCB associated with the load module
having this task name and will be terminated in o
group with the other tasks using the task name and
PCB (i.e., the other task connected into the load
module). The caller's task is the default name,

The connection will not be performed if the load

module with the specified task name has not been
loaded or is in termination.

Job name is the name of the job in which the task

resides and must occupy two words. The caller's
job is the default name,

Type completion is the code describing the status

of the service call,

System Function Call Formats 97

Clock interrupt connections ore always to the counter-
equals-zero interrupt. Interrupt address/labe! cannot con-
tain a clock pulse level. Use of clock 4, CT, and HI inter-
rupts is restricted and is to be used only by the monitor,

On clock counter-equals~zero connects, the MTW is moved
automatically to the clock puise, or an MTW =1 is stored
in the clock pulse and the clock value is stored in a fixed
real memory location for the clock level (K:CLOCK],
K:CLOCK2, and K:CLOCKS3). The values inK:CLOCK1-3
will be moved to the actual counter location (CLK1-3) on
the central connection each time the task is entered, which
will be via CLKI1SAVE-CLK3SAVE. If a direct connection
is used, the user must reset his counter. If o central con-
nection with o clock value is used, the user need not per-
form any resetting.

Successful processing will return to the instruction following
connect. If an error address is specified, all other comple-
tions will exit to the error address.

DISCONNECT frees the interrupt location, making the
leve! available for any task.

Parameters DI to TCB, XPSD/Start address, and MTW/Clock
_ value are only used on CONNECT. DE is used on ARM and
CONNECT. Interrupt label, Code and P} - Pg flags must
always be provided. Error address, Task name, and Job
name are options used by all services. These services are

only available to foreground tasks.

If the interruptor CAL is connected when o CONNECT CAL
is performed, the current connection must be to the same
task as the new one being requested.

Once a CONNECT or DISCONNECT is in progress from
one task, a CONNECT or DISCONNECT from a higher
priority task to the same interrupt is not allowed until the
original one is complete. An error code will be given to
the second caller chronologically.

Once a CAL routine is connected, a call by any task will
cause entry to the connected code. CAL processing will be
done using the PCB and TCB of the callingtask. Ifthe CAL
processor does CP=R service calls (CALls), CP-R will per-
form the service for the original calling task.

For example, if c CAL2processing routine does a TERM, the
calling task is terminated, not the CAL processing routine.

EXIT will cause the caller to become idle, The user's
CAL processor should clear the temp stack of the PSD

and registers saved by the central CAL connection prior
to the EXIT.

98 System Function Call Formats

The CALRTN function shouldbe used to exit from centrally
connected CAL2, 3, and 4 processing. CALRTN will clean
the user's Temp Stock of CAL linkage words. '

In direct connections, the CAL processing routine is respon-
sible for all reentrancy and retuming control to the caller.

The format of the stack upon entry to centrally connected
CAL processing routines is shown in Figure 6. TCBs for
centrally connected CALs are shown in Figure 7. The con-
dition codes at entry to centrally connected CALs contain
the 'R’ field from the CAL instruction.

Previous top
of stack — ™

PSD Word 0

PSD Word 1

RO

Rl

(Registers 2 through 14)

New top of
stack — R15

Figure 6. User Temp Stack Format at
CAL Processor Entry

TCB +0
Saved PSD
+1
+2 Intermediate PSD
+3 (Address = TCB+4) Disable
+4 STD, RO CAL Registers
+5 BAL,R1 CALENTRW™
+6
Entry PSD
+7

Figure 7. TCB for Centrally Connected CAlLs

CALRTN The CALRTN function call is used by centrally
connected CAL2, 3, ond 4 processing routines to return
to the calling task at the instruction following the coll.
CALRTN haos the format

CALl1,7 address
where address points to word O of the FPT shown below.

word 0

X'60' 0

V2 314 5 ¢4 7T0 Y WIITZIIHlsMl?lll’mﬂl?llh?ih;’.ﬂnzll

where X'60' is the code for the CALRTN call.

ENABLE,DISABLE,TRIGGER
Commands)

(Interrupt Controlling

These function calls (available only to the foreground) are

of the form
CALYL S address

where address points to word O of the FPT shown below.

word 0

Code 00{"{0—0l Interrupt oddress/Iabel

1 2 3¢ 5 6 718 ¢ W H IZI,MISMI7II"NII=’EZ‘E=!"5’!]!

optional (P11)

0 0 Error address
T 2314 5 478 T ONZTB Mo BRI KT PR RDRIT D

where

Word 0

Code = X'00' specifies trigger.
= X'01 specifies disable.
= X'02' specifies enable.

P is the Error address parameter presence indi-
cator (0 means absent; 1 means present).

I specifies that either the oddress (I; = 0), or the
label (I2 = 1), of the interrupt is specified in In-
terrupt address/label.

Interrupt address
interrupt.

is the hexadecimal oddress of an

Lobe! is a two-character EBCDIC nome for o label.

Word Option

Error oddress is the entry oddress to the user's error
handling routine if the monitor encounters any error
in processing the call and is unable to complete the

requested function. If no error address is p}ovided,
the monitor will process an ABORT return.

START Begin executing o secondary task. This functior
call removes a secondary task from idie state following a
STOP call. The call has the form

CALL 7 oddress

where address points to word O of the FPT shown below.

word 0
X'4A" 10 0
C 1 2 M4 5 e 278 @ 10 11712 13 14 18116 17 V8 9120 21 22 23124 25 26 T8 XX 3

word |

So]1 |4 o——o]w{n/Ho ' ols
| B B B S Sr S e B AN BRAIS AR EAT IR 1RTIRVAR | 0 AL AR IR IR TR AL R T
optional (P1)

—0 Error address
T T T Y T T T i T R R T Y T s TN YTy

required (P3)

Task nome l
1,

optional (P4)

Task nome I

optional (P10)

Type comp. |0 0
T T T T T T B W R P A RS R E B TR SRR RS

optional (P11)

Job name
1 2 314 5 4718 F 17y, [1
optional (P12)
Job name
4] N2 3 14 157w 17 19 0 2t 2252 202 0N
where
Word 0 *

X'4A" specifies the START function.

Word 1

Py is the error oddress parameter presence indi-
cator (O means absent, 1 means present).

System Function Call Formats 99

P4 s the task name porameter presence indicator
and is one if an eight=character task name is
provided.

P10 is the type completion code parameter indica-
tor (0 meons absent; 1 means present).

P11-Py12 are the job nome parameter presence indi-
cators (0 means absent; 1 means present).

=1 is the abort override indicator. If set, con-
trol will be returned to calling instruction + 1 if
errors are detected and no error address parameter
has been provided.

Word Options
Word options are the same as for STOP below.

STOP Stop executing a secondary task. Thisfunction al-
lows a secondary task to place itself or another task in o
stopped state. It has the format

CALl,7
where address points to word 0 of the FPT shown below.

address

word 0
14
X'48' [0 0
V2 374 5 & 718 ¥ %0 11112 13 14 15716 7 unmuﬂE!nSﬂElSﬂSn

optional (Po in word 0)

MO0 130 F
{003 «|0——010lnliz| O 0{0{0 0|7
i) ITa S 6 778 % 10 N2 1394 15T 1718 19120 20 22 23724 25 n 3

optional (P1)

0——0 Error oddress
0 1V 2 3Te 5 ¢ 708 9 10 1112 13 14 15T 00 wuwrxnunuuunﬁﬂmn

optional (P3)

Task nome
T T It St T T T R I I R R TR AR EORNERSIBRET

optional (P4)

Task name
] Vv 2 314 5 & 718 9 Wl”lzlluﬁr'.|’|l|‘x2‘ss=ﬁ=ssgle

optional (P10)
Type comp. |0 j
Vo2 JT4 S 6 778 ¢ 0 N2 13 uslie 1780 1 M t)

optional (P11)

Job name
1 [] W12 13 W 1518 17 0 1 Kl
optional (P12)
Job name
4 [} 1MTI2 13 14 15T W7 8 1 1
where
Word 0

X'4B' specifies the STOP function,

100 System Function Call Formats

Po s the presence indicator for word 1 (0 means -
obsent; 1 meons present). If Pg =0 then the STOP
applies to the calling task. '

Word 1

P is the error oddress porameter presence indica-
tor (0 means absent; 1 means present).

P3-P4 are the task nome parometers presence indi-
cators (0 means absent; | means present).

Pio is the type completion parameter presence in-
dicator (0 means absent; 1 means present).

Py1-Py2 are the job nome parameter presence in-
. dicators (0 meons absent; 1 means present).

Fo~! is the long wait indicator making the normal
secondary task o prime candidate for roll-out.

Fr=1 is the abort override indicator. If set, control
will be returned to calling instruction +1 if errors
ore detected and no error address parameter has
been provided.

Word Options

Error address is the return oddress if errors are de-
tected in service processing.

Task nome is the four= or eight-character name of
the secondary task to be stopped. Default is the
caller's task.

Type completion is the completion code for the ser-
vice including the error code, if any.

Job nome is the four- or eight-character nome of
the job in which the tosk resides. Defoult is the
caller's job.

STATUS MODIFY Obtain and modify task controls.
STATUS is a function call that allows the calling task to
obtain task control data. MODIFY is a function call that
allows certain secondary task controls to be modified. The
call has the form “

-

CALI,? address

where address points to word 0 of the FPT shown below.
word 0
Code

R B A EE) [louuuuulunuﬁlnzwunuukvnamav

-

word 1 »
%o[3|fo—ofulo sl |2l o —]

1 3745 ¢ 7270 9 0 117112934 15Tw 17 00 D Bl 2 718 % X N
optional (P1)

o0——0 Error address
T T T T T T T T i T R T NwRT

optional (P3)

optional (P4)

Task name
4 [1 ry 6 1] Fi
optional (P8)
Flags Priority

T T T T T T T T T S TN IR T B R R YN
optional (P10)

Type compl. Completion status

B A I A B R L A TS LA AF I O T LR R % AL N

optional (P11)

Job name

4 5 6 7 W0 12 13 e s 1710 i 4 x 3

optional (P12)

Job name
T 2 314 5 6 208 9 10 11132 13 ba 15118 37 18 IRI20 21 22 23124 25 26 I 2 0 2

optional (P14)

* account name oddress

T3 ITe S S TR T R NI N MR T BRE N EDNERDIRD ¥

where
Word 0
Code = X'4E’ specifies STATUS function.
= X'4F' specifies MODIFY function,
Word 1

P is the error address parameter presence indicator
(0 means absent; 1 means present),

P3-P4 are the task name porameter presence indi-
cators (0 means absent; 1 means present),

4 is the flogs and priority parometer presence indi-
cator (0 means absent; | means present),

P' is the type completion parameter presence in-

dicator (0 means absent; 1 means present).
P11-Pj2 ore the job nome parameter presence in-
dicators (0 means absent; 1 means present).

P is the optional account name parameter pres-
ence indicator (0 means obsent; 1 means present).

F7=l is the abort override indicator. If set, con-

trol will be returned to calling instruction + 1 if
emors ore detected ond no error address parameter
has been provided.

Word Options

Error oddress is the location to return to if errors
are detected in the service.

Task name is the name of the task whose controls
are being fetched or modified. Default is the
caller's task.

Flags are as follows:

Bits Value Meaning

0 1 Task in final termination.

1 1 Task connected to CAL2,

2 1 Task connected to CAL3.

3 1 Task connected to CAL4,

4 1 Background task,

5 1 Secondary task,

6 1 Task being aborted.

7 0 Tosk initioted via RUN,

1 Tosk initiated via INIT,

8 1 Load to be performed.

9 1 Public Library used by primary tasks,
10 1 PublicLibrary used by secondary tasks,
11 1 Release to be performed.

12 1 Control sequence requested,
13 1 Tosk is loaded.

14 1 Task is run queved.

15] Break control requested.

Priority is the current task priorityof the task os out-
put from STATUS. On o MODJFY call, it is thepri=
ority to which the caller wishés fo change the task.

Type completion is the completion code for the ser-
vice, including error codes.

Job name is the four- or eight~character name of

the job to which the secondary task belongs. De-
foult is the caller's job.

System Function Call Formats 101

account name address is the oddress of a five word
data block that will receive the account and name
associated with the JOB. The format of this block

is shown below.

word 0

A A2 A3 Ad
s A AT B RUCE N NACE T 5 T
word 1

As Ag A7 Ag
e A N AL A RO R RN 2 20 51 1134 152 VR ¥ B 3
word 2 .

Ny N N3 Ny
Ty e
word 3

Ns Ng N7 Ng
L B B S A N A RETMET AN RT3 NN Il TR TR YT
word 4

Ng Nio Nny N2
L 0 S I B T S A A 2R NI R TRNCANTRR VAN N AE IR R ST I R At B R I
where

Ai ore the EBCDIC choracters naming the account,

Ni ore the EBCDIC characters in the user name.

A task whose priority is modified to a higher level may not
be capable of being dispatched ot that level until the hord-
ware interrupts drop bock to the tasks previous level. This
is the case if it wes in execution when some higher priority
interrupt coused it to be interrupted, ond the modify call
was done at this higher level.

If @ STATUS call has Pyj-Pjg but not P3-P4, the current
task's status will be ocquired, including the job name which
will be stored in the Job name parameter,

For STATUS calls only, if P14 is set, the account and user
names for the current JOB will be stored in the five word
data block. This parameter isnot used by the MODIFY call,

MASTER, SLAVE These function colls (available only
to the foreground) are of the form

CALL 5 oddress

where address points to word 0 of the FPT shown below,

102 System Function Call Formats

word 0

Code 0
N R AKEE B IRALNL Wi 13 14 137 1 '
where
Code = X'07' specifies o slove-mode request.
= X'08' specifies o master-mode request.

When a secondary task requests moster mode (X'08'), it is
placed in master-mode/protected.

SEGLOAD This function call is available to primary
tasks and background tasks loaded with the SMM option.
The call is of the form

CALY, 8 address

where oddress points to word 0 of the FPT shown below.

word 0

x'on "{%l o——o|1 Segment number

T 1 T34 3 et P BT IR T ARET TR RNERD AR D

optional (P1)

110 0| End-action interrupt/Labe!
O B R E O SRR AL ML B B R A A E A B T LR O O TR AL -
optional (P2)
0 0| Address to process error returns l
2 3Ta 5 ¢ 7T + 16 1T12 13 96 sTie 17 18 WX 21 22 22126 25 2¢ 27126 9 X 3!
where
Word 0

xX*01' specifies the SEGLOAD function.

P, _ indicates the presence or absence of word I;
0 means absent, 1 means present. (Pyisprocessed
only if T =0.)

P indi cates the presence or absence q the error
oddress word.

T indicates whether control is to be returned fol-
lowing the call or tronsferred to the starting lo-
cation of the segment at the conclusion of the
segment lood (0 = retum to colling program;

1 = transfer to new segment.)

Word Options

I indicotes the contents of the end-action interrupt
field (primary tasks only).

I1=0 indicates no end-action.
I=1 indicates an interrupt oddress.

1=2 indicates an interrupt labe!.

If end-action is specified, the request to load the
segment will be queued and contro! will be re-
turned immediately to the calling progrom. The
calling program can then exit and relecse control
while the segment is being loaded. If end-action
is not specified (I = 0), control will not be re-
turned until the segment is loaded. The user is
responsible for checking the status of the load if
end-action is selected.

Address to process error returns is the oddress of
the user's routine for processing any error or ab-
normal returns received while attempting to load
the overlay segment. The codes retumed will be
identical to those of the Type Il READ CAL since
a READ CAL is used by SEGLOAD to load the seg-
ment. If this oddress is not present ond an error
occurs, o foreground program will be exited or a
background program aborted. If an error is de-
tected in the user's PCB or OVLOAD table, the
User or System Trap Handler will be entered.

Waming: Do not issue SEGLOAD calls from tasks of higher
priority than the 1/O interrupt.

WAIT A background program will enter the "wait" state
through this function call if an JATTEND cord was included
in the control commands for the job. Nomally, a back-
ground program would use WAIT after typing on clarm to
the operator that requires an operator response. While in
this state, the Control Task ‘waits for a key-in from the op-
erator specifying the disposition of the background program.
The operator may specify continue (C), continue from OC
(COC), or abort (X).

This function call is of the form
CALl 9 9

No FPT is used.

TIME Programs may interrogate the monitor to deter-
mine the time of day ond date.

This function call is of the form
CALlL 8 oddress

where address points to word 0 of the FPT shown below.

word 0

X'10 f10 0 Address
0 2)74 5 ¢ 770 K OIT12 13 14 Bl 17 8 o 2 2724 252 D178 39 20 3!
where

X"’ is the code for the TIME call,
FI " indicates the format of the returned values.

Address is the address of the first word of the block
to receive the time ond date. 1f F} =0, a four
wordblock is retumed; if F} = 1, @ two word block
is returned.

For Fy =0, the block contains EBCDIC characters & shown
below:

word 0

h h : m
word 1

m 23 m °
word 2

n) d d
word 3

' ' y y
where

hh is the hour (0 < hh <23).
mm is the minute (0 < mm < 59).
mon is the month (3-letter abbreviation).
dd is the day (01 <dd £31).
yy is the year (00 < yy = 99).
For F} =1, the block contains packed binary values os

shown below:
byte0 bytel byte2 byte3

whole year (i.e., 9976) mo
dd 1 hh I mm s
where the values are equivalent to those stated above
except for:

whole year is the full date.
mo is the number of the month.
ss is the seconds (0 < ss < 5910).

Word 0
Word 1

System Function Call Formats 103

GETTIME This function call is ued to retum elapsed
time to the calling task. It hos the form

CALL 7 address
where address points fc. word 0 of the FPT shown below.

word 0
4
x'61 1|0 0
B 1 2 31a 5 & ® % ¥ 1017 13 14 1509 17 18 1#12C 21 22 23124 25 26 7126 29 % 3%

word 1

Time
0 1 2 374 5 & 778 9 10 11737 13 34 1578 17 48 19020 20 22 23124 25 20 771”? x N
where
Word 0

X'61' is the code for the GETTIME call.

F is the Timer option (1 is for time since mid-
night; 0 is for time since system initialization).

Word 1

Time is the current value of the timer. For F1=1, this
is a binary number representing the number of seconds
since midnight (this is the time set by the operator).
For F1=0, this is a binary number representing the

number of elapsed seconds since system initialization.

STIMER (Request a Clock Interval Posting Service)
This function call allows a task to sense when a specified
time has been reached, either by subsequently checking
the service or by waiting. The cal! is of the form

CALl 7 oddress

where address points to word 0 of the FPT shown below.

word 0
P

X'44' 0|0 OI
0|33|45.7"ml”l?|ﬁl5”‘l7\l"|201luf‘huﬁvl N
word 1
{0 ————0%{ | 00{%| 0 ——————— 0/’ |5} |0| o—0]"
0 1 2 314 3 6 708 9 0 111213 w 1516 17 190 WX 20 25 20 S XN
optional (P1)
0 0 Error oddress
b e e 3 R) T T R e TR A TSR DR
optional (P9)

110 0 End=-oction oddress I
AR RO AL LA AL BB T 1

104 System Function Call Formats

optional (P10)

[]
Type ¢lo .

: 0
completion |v

1 2 d14 5 6 718 9 1Nz 39 e 1 [I] il 0 3

optional (P13)
Time
4 5 & 10 111213 4 5T 1710 1 24 2% I X 3

X'44' is the code identifying the STIMER function.

Po is the presence indicator for word 1, (1 indi-
cates presence). 1f Pg =0, STIMER functions o=
though the time parameter was absent,

Word 1

PI is the presence indicator for the error oddress
parameter (1 indicates present),

P is the presence indicator for end-action param-
eter (1 indicates present),

P1o is the presence indicator for the type comple-
tion code parameter (1 indicates present),

F’Ia is the presence indicator for the time porom-
eter (0 indicates absent and no timeout will be
done; 1 indicates present and the CAL will be
timed out).

F8 is a delete on post indicator (1 means delete
the event when it is posted —no CHECK will
be performed and the user's FPT will not be
posted; 0 means o CHECK will be performed).
FB has meaning only when F3 =0,

Fo=l is a long-wait indicator, making o second-
ory task o prime candidate for rollout.

F|=l specifies that the time word contains a thres-
hold setting versus an interval value,

F3=| wait for time elapse before returning, versus
returning to the next instruction as soon as the
service request has been established.

-

F7='| is the abort override indicator. [f set, con-
trol will be returned to calling instruction + 1
if errors are detected and no error address po-
rometer has been provided.

Error address is the retum for immediate errors.

I,end-action address 1 indicotes the contents of the
end=action oddress number field, (End-action is
allowed only for foreground.)

I=0 indicates an end-action BAL address to
use when the time has elapsed.

=1 indicates an interrupt address to be trig-
gered when the time has elapsed.

=2 indicates an interrupt operational label to
be triggered when the time has elapsed.

Type completion,BUSY indicotes the status of a

timer service.
BUSY =1 indicates timer has been initioted.

=0 indicates timer is completed and
checked.

indicates that the timer
has elapsed,

Type completion = |

Time if Fl =0 specifies a time interval in seconds,

F, =1 specifies the threshold time (since sys-
tem initialization) when posting shouldoccur,

If the Time parameter is omitted control returns to the
caller immediately. The user may obtain the current

time in seconds via the GETTIME call (specifying time
since system initialization) to establish a base time for
time threshold setting.

ERRSEND (generate an error log message)

A text message can be placed in the error log through use of
the ERRSEND function call. The ERRSEND CAL has the form

CAL1,7 address

where address is the location of word 0 of on FPT, The
FPT has the form:

word 0

4 Code Ho 0
T TS T e T P R R W B R T AR D EBE R RN X

word1

"Jol/+{ofe[o]ololsd o ol
i 374 § & 7218 % 10 11112 12 1 1571 17 18 9] [l 3

opric;nal (r1)
0— 0

Error address I
V2 34 § & 778 ¢ W Iil12 13 14 15Tt 12 18 (0 21 25 2in 0 N

tional (P3)

*1 0 0 Buffer address

T T T T T B T I R B R TR AR N E B s o T

optional (P4)
*10 0 Byte count
T I I T T T R N D RS e T RS T e NSRS F T
optional (P6)
*10 O{BTD
01 2 31ea s & 770 ¢ 1z 4 isTe 170 I 4 ® X 3!
optional (P10)
Completion .

code 0 0

T 1 2 314 5 ¢ 778 9 10 11712 13 14 15706 17 180 Wi 2 22 3124 252 DR X N

where

Word 0

Code is X'66' and bit 8 must be set.

Word 1

Pl is the error address parameter presence indicator
(0 means absent; 1 means present),

P3 is the buffer address parameter presence indica-
tor (0 means absent; 1 means present).

P P is the byte count parameter presence indicator
(0 means absent; 1 means present).

P is the byte displacement parameter presence in-
6 dicator (0 means absent; 1 means present).

P10 is the completion type parameter presence in=-
dicator (1 means present; 9 means absent),

F7 is an abort override indicator: 1 means do not
abort if errors are detected but no error address is
provided; 0 means abort if errors are detected and
no error address is provided, :

Word Options

Error address is the address of the entry to the user
routine that will handle error conditions.

Buffer address is the word address of the user buffer

to be used in the 1/O operation. Data is written
from this buffer,

System Function Cal! Formats 105

Byte count is the size in bytes of the data record
(55 bytes maximum), ‘

BTD is the byte disp'ccemenf (0-3) from the word
boundary of the beginning of the data record.
If this parometer is omitted and the buffer address

parameter is included in the FPT, value 0 is os~
sumed for BTD.

Completion status is the word wherein the system
posts the completion parameters for the request.
ALARM (initiates a system alarm shutdown)

The ALARM call causes the system to perform an orderly
shutdown. It has the form

CAL1, 7 oddress

where aoddress points to the FPT shown below.

X'6A' Address l
rrrTTvihry

where oddress points to a TEXTC message which will be
logged on the operator's console s the alarm message.

RECALARM (set post=shutdown routine entry)

The ALARM Receiver call specifies a post=shutdown action,
1t hos the form '

CAL1,7 address

where oddress points o word 0 of the FPT shown below.

word 0
X69' [oli{0——0 Address
Ty YTy B TR T AN T E IR Y

106 System Function Call Formats

opﬁbml (PO in word 0)

|0 0

T Y T T T T T T T T W T e T T N T Y

optional (P1)
0 0 Error address
(I B A O N R AL A R P R IR A B R RO A S
where
Word 0

X'69' is the code for the RECALARM call,

REB =1 will cause the system to automatically
reboot after alorm processing is completed. In
this case, oddress is ignored.

Address is the oddress fo which control will be
tronsferred when on alarm occurs. This tronsfer
occurs after CP-R alarm processing is completed.
A zero address will couse reset of the alerm od-
dress. Note that only one alarm address is active
per system and the alarm oddress must reside in o
foreground private memory area.

Po is the porameter presence indicator (0 means
absent; | meons present).
Word Options

P' is the error oddress parameter presence indicator
(0 means absent; 1 means present).

Error oddress Is the location to retum to if errors
are detected in the request,

o

6. CP-R MEMORY MANAGEMENT

REAL MEMORY ALLOCATION
Real memory for CP-R is allocated at SYSGEN into o

number of partitions that fall into four distinct closses as
follows:

o CP-R System Memory

e Foreground Private Memory

e Foreground Preferred Memory

e Secondary Task Memory

Each class of memory consists of one or more partitions

whose boundaries and extent are established during the
SYSGEN process.

Memory partitions within a given class have certain com-
mon attributes:

1. They must begin and end on o page boundary.

2. Within themselves they occupy contiguous real poges.
3. They cannot be larger than 64 pages (32K).

4. They may not overlap another partition.

Note that the Secondary Task Memory Partition consists of
all of the real memory that is not explicitly allocoted to

onother partition and therefore the 64-page restriction does
not apply to this class of memory.

An example of real memory allocation for a 64K system is
shown in Figure 8.

CP-R SYSTEM MEMORY

CP-R system memory is comprised of one partition starting
at memory location 16 (X'10') occupying o variable num-
ber of real memory pages sufficient to contain the follow-
ing items:

® Spoce required for trap and interrupt locations.

e Space required for resident CP-R system pointers.

® Spoce required for resident CP-R system tables.

® Spoce required for resident CP-R routines including
resident overlays.

® Space required for system potch area.
e Space required for CP=R temporary space pool.

e Space required for CP=-R overloy area.

The layout of CP=-R system memory is shown graphically in
Figure 9.

CP=R system memory is given a write lock of 11. Primary

and secondary tasks execute with a write key of 01 and 10,

respectively, and thus are prevented from modifying CP=R
system memory.

FOREGROUND PRIVATE MEMORY

This CP-R class of memory is used exclusively by foreground
primary tasks. Foreground blocking buffers used by pri-
mary tasks may exist os a separate portition of foreground
private memory or they may exist as an area within the first
defined foreground private memory partition.

If foreground blocking buffers are specified as a separate
partition then the restrictions governing partitions are in
effect. If they are defined as an areo then these restric~
tions are not in effect.

The foreground moilbox is o special area within the fore-
ground private memory class. The foreground mailbox may
exist as a separate partition of foreground private memory
or it may exist as an area within the first defined foreground
private memory partition.

If the mailbox is a separate partition, it is subject to the
restrictions placed on memory class partitions. If it is an
area within the first partition of foreground privote mem=-
ory, then these restrictions are not in effect.

Foreground private memory is given a write lock of 01.

FOREGROUND PREFERRED MEMORY

This class of memory may be allocated toneither primary or
secondary tasks. Primary tasks may ocquire memory pages
in this memory class only through explicit calls to CP<R
memory management routines giving the real memory od-
dress of the requested page(s)

Secondary tasks may acquire memory pages in this memory
class by requesting virtua! to real oddress correspondence

CP=-R Memory Management 107

Tasks.

1. Secondary Task Memory is used for Foreground or Background Secor.lddry Tasks.
2, CP-R System Memory for use by CP=-R only,
3. Foreground Private Memory used by Foreground Primary Tasks only.

4. Foreground Preferred Memory may be used by either Foreground Primary Tasks or Foreground Secondary

0 8 16 24 32 48 64K
CP-R Foreground | Secondary B S Secondary H g Secondary
System Private Task § 2 Tosk § s Task
Memory Memory Memory §"§ Memory] Memory

w :‘:’ ub. s
£ ‘©
& &
1 1
2
3
4 ~4

Figure 8. Exomple of Memory Organization for 64K System

Traps, Interrupts and
System Table

System Pointers and
System Table

CP-R Temporary Space
Pool

(TSPACE)

System Overlay Arec

System Patch Area

Resident
CP-R

Optionally
Resident
Overlays

108 Foreground Preferred Memory

Figure 9. CP=R System Memory

for a porticulor segment via the FIX option on the :SEG or
:PUBLIB commands when the task is linked with |OLOAD.
In this cose the real page thot has oddress correspondence
to the requested virtual page must be defined as foreground
preferred memory.

Foreground preferred memory is given a write lock of 00
moking it accessible from both foreground primary and
secondary tasks.

SECONDARY TASK MEMORY

All real memory not explicitly defined as belonging to
another memory class is called secondary task memory. All
memory greater than 128K is secondary task memory and
there may be poges of memory in the first 128K that fall
into this class

This memory is used exclusively for secondary tasks and
Public Libraries that are not used by primary tasks.

PRIMARY TASK MEMORY ALLOCATION

Primory tasks are allocoted contiguous real memory at
IRUN or HINIT time from information contained in the
task load module. If Public Libraries are to be loaded
with the task, the memory that they require must be
availoble ot IRUN or !INIT time or the task load can-
not be completed.

More than one primary task lood module may be loaded
into a given foreground private partition, by issuing multi-
ple RUN or INIT calls, providing that memory residency
(as defined in the load module) conflicts do not occur.

Primary tasks may acquire ond release memory poges in
foreground-preferred partitions by using the GETPAGE and
RELPAGE function calls. The requested memory must be
available at the time of the call or the request is not com-
pleted. The memory acquired in this fashion does not be-
long to any named segment as such and, therefore, cannot
be shared with any secondary task. It is considered private
to the requesting primary task.

The user must “remember" the poges he has acquired so thot
he may release them when they are no longer needed.

The memory occupied by all tasks in o load module is re-
leased when any task in the lood module terminates.

VIRTUAL MEMORY ALLOCATION

Eoch secondory task in CP-R has 128K of contiguous virtual
memory avoiloble, regardless of the size of the real memory
or of other users in the system. Some of this memory is
available directly to the task ond some is used for services
that the task requests. Figure 10 shows the fundomental
allocation of virtuol memory.

SYSTEM VIRTUAL MEMORY

System Virtual Memory (SVM) occupies virtua! poge 0
through virtual poge 47 aond is divided into two separate
arecs, the first of which (CP=R) is common to all tasks,
and the remaining area (CP-R overlays)is task dependent.
SVM is given an occess protection code of Read ond
Execute to prevent accidenta! destruction of critical sys-
tem data.

Virtual pages O through 47 are reserved for resident CP-R
routines. This orea is mapped one-for-one with real memory;
that is, there is oddress correspondence between real and
virtual oddresses.

One page of SVM is reserved for CP~R overlays. These
overlays are part of secondary task context and are used by
CP-R in providing certain system services to the user.

Note thot the end of CP-R system memory does not neces-

sorily end ot the start of task virtual memory. Typically
there is space left over in system virtual memory (which is
always mapped one for one with real) that the user may
define partitions in at his discretion. This allows user

code to exist in both real and virtual memory if desired.

TASK VIRTUAL MEMORY

Task Virtual Memory (TVM) starts ot poge 48 (24K) ond
ends at page 239 (120K) providing 192 pages (96K) of
virtual memory directly availabie to each secondary task.
TVM is allocated, under user control, on a segment basis,
where a segment consists of one or more poges. Control is
exercised via o set of memory management operations which
provide for activation, deoctivation, overlay, and erasure
of segments.

“

RESERVED PAGES

Sixteen pages (poge 240 through 255) are reserved for system
use on behalf of the user. These pages are used for such
items as 1/0 blocking/deblocking buffers, Loader tables,

Secondary Task Memory/Virtual Memory Allocation 109

CP-R Reserved Pages
1 1 I 1
CP-R
Overlays
| !
Addressing 24K
Continuum I } : .
Page f 0 47 48 239" 240 255
lﬁ’""" Virtual Task Virtual Memory Reserved
-
CP-R
h:::::ison Read & Execute Segment Dependent Controlled N

Figure 10. Virtual Memory Orgonization

debug tables, symb.l tables and other system information as
needed. The first 12 of th.ese pages (240-251) are job-level
pages ond are shared by all tasks in that job. The remain-
ing four pages are private to each task.

ACCESS PROTECTION

System virtual memory and uverlay area is alwoys marked
read ond execute. Task virtual memory access protection

is controlied by the user on o segment basis. The reserved
pages occess protection is controlled by the system con-
sistent with the type of data involved.

Initially, oll poges in TVM that are undefined or not octi-
vated are marked no-access, an attempt to reference these
pages results in trap conditions being returned to the user.

The user con control the access codes in TVM between 24K
and 120K but cannot change access to SVM or the reserved
pages. On dispatching every task, the access codes for oll
TVM is initialized to assure that all memory is properly
protected.

SOFTWARE SEGMENTATION

The method of controlling the location of data or instruc-
tions in virtual memory is by means of a softwore segmen-
tation scheme as follows:

1. The active memory at any time is composed of a series
of segments under software control.

110 Software Segmentation

2. Eoch segment consists of an integral number of poges,
from one to @ maximum of 32 (the 32-page limit does
not apply to the root segment). These pages within
a segment are contiguous but there may be gops in
virtual memory between segments.

3. Each segment is built by the Overlay Loader from one
or more relocatoble object modules (ROMs) or library
routines.

4, Eoch segment is given a number ond a virtual memory
starting location os well os length ot linkage edit time.
This number, virtual location, and length remain with
the segment permanently.

5. Eoch segment must begin on o page boundary. Segments
may contain data, instructions or reserved space,or @
combination.

The segment is the sma!lest shorable unit of memory. Sev-
eral segments moy begin ot the same virtual memory oddress
if desired, ond if so, result in their being overlay segments
for eoch other. Only one of these may be active ot ony
one time, and the active one is represented in the actual
hordware mop ot execution time. Because each segment

is independent of other segments, any sort of overlay struc~
ture may be built; the user is not limited to o conventional
tree structure.

SEGMENT ACTIVITY

The segments of a task may be in one of two states relative
to that tosk:

ACTIVE The segment is in real memory and in the mop

if the task is active.

INACTIVE The segment is currently not available to the
using task. If the task is active, the segment
is not on the map.

The aobove states reflect segment activity relative toagiven
task. They do not, however, reflect the actual state of o
segment from a memory management standpoint. This comes
about because of sharability, initiclization, and roll-in/
roll-out considerations.

For purposes of memory management, a segment has five
distinct states:

before any segment activation has occurred.
This state may also be reached if all tasks using
o segment have ERASED it. |

DEFINED This is a substate of ERASED. This state rep~
resents an empty segment, one whose contents
do not exist in the Load Module.

ACTIVE One or more tasks have ACTIVATEd the seg-

ment. The segment contents exist in real mem-

ory and in the map of any active using task in
which the segment is octive.

INACTIVE The segment contents exist in real memory; the
segment is not active to any using tasks; and all
using tasks have not erased the segment.

ROLLED- The segment contents exist in the roll-out file.
ouT

ERASED Segment contents do not exist in real memory Table 15 shows the transition operators and their effect on
but may be found in the tasks' Lood Module a segment relative to o task. Figure 11 shows the possible
(LM). This is the initial state of o segment state transitions of a segment,
Table 15. Segment States Relative to a Task
Segment State
Operation Segment Inoctive Segment Active
ACTIVATE Activates requested segment from Load ERROR
Module if segment state is ERASED,
from memory if segment state is IN-
ACTIVE, from roll-out file if segment
state is ROLLED QUT. ERROR if over-
lapping segments in virtual memory.
If ACTIVATE is to DEFINED segment,
real memory for the entire segment is
acquired.

DEACTIVATE ERROR Causes segment to be made inactive
to this task. Actual segment state may
or may not change depending on shar-
ability. CAL or FPT may not be in
segment that is being deactivated.

ERASE Segment contents may be lost (real memory released) depending on sharability.

Segment remains inactive to calling task but segment state may change to
ERASED or DEFINED.
GETPAGE ERROR if segment stote isnot DEFINED. Acquires real memory.
If page request to DEFINED segment
acquires real poges and makes the seg-
ment ACTIVE to the calling tosk.
—

RELPAGE ERROR Releases real poges. If all real pages
in the segment are released the segment
is marked inactive to the task and the
segment state is either ERASED or
DEFINED based oninitial segment state
when looded.

Software Segmentation 1

ROLL-OUT

ACTIVATE

ROLLED

ACTIVE

ourt

ACTIVATE

RELPAGE

ACTIVATE
GETPAGE

ERASE

Figure 11.

SHARING SEGMENTS

The user may specify to the Overlay Looder that certoin
segments are to be shared between using tasks. A segment
is system level if it is shared by two or more tasks within
different jobs. A segment is job level if it is shared by two
or more tasks in a job. A segment is task level if used ex-
clusively by a single task. Segments are given numbers
(by the user) that are used as parometers on CP-R service
requests to manoge the segment. Numbers need not be
unique between jobs if o segment is defined by the user as
job level. System level segments numbers must be unique.
. Public Libraries are system level segments that are man-
oged by CP=R on behalf of the user.

54 A
Software

s O\
Y o

Segmentation

\sl

-

112

Segment States

Segments that are job level may only be used by tasks within
a given job. System level segments may be used by any task
in the system. An example of system level sharing are

Public Library segments.

If oll tasks sharing o segment terminate or eraséait, it is
erased. Therefore, the user must never aliow all using
tasks to erase a segment if the contents are to be perma-
nently maintained. In this case, it is rolled-out (if real
memory is needed) when it is not active to any task, and
is rolled in if it becomes octive again.

A system leve! segment is also erased if all using tasks within
the using jobs terminate, or erase it.

Access protection for each segment is specified by the user
through controls provided by the Overlay Looder. Seg-
ments may be given any one of the following tyoes of
protection.

No Access

Reod Only

Read and Execute
Write, Read, or Execute

The given protection type applies to all pages in that seg-
ment on a permanent basis, that is, CP-R does not pro-
vide services to dynamically change the segments occess
protection. :

SECONDARY TASK STRUCTURES

A mapped secondary task in CP=-R is synonymous with o file
which contains a header and a lood module consisting of
one or more segments. Load modules, when reod into core
memory and executed, become secondary tasks. The lood
module is written by the Overloy Loader (OLOAD) which
inputs control cards, ROMs, PUBLIB linkage controls, etc.;
performs oll oddress resolution; develops absolute core
imoges; and writes them on disk. It also writes the load

module header which contains all control data requ:ﬁred at
INIT time to lood and execute the task. :

+

In order to understand the input options to OLOAD, the
user must understand Memory Management in CP-R.

The ovailability of o memory map on Sigmo 9 and use of
virtual memory allows more flexibility in structuring over-
laid programs.

Figure 12 illustrotes a program with a conventional tree
structure and an olternate structure, non-overlaid in virtua!
memory. The latter structure, if looded in real memory,
preempts large areos of real space which may be required
by other tasks when activated. Such a structure for real
memory programs is therefore not desirable.

Use of the linear tree structure is ideal .for reentrant pro-
groms in virtual memory. Those segments that contain re-
entrant code may exist in core only once, and moy be
shored by multiple tasks that are simultaneously active.
The ACTIVATE and DEACTIVATE calls affect only the
status of a segment with respect to the calling task. There-
fore, each task has a unique list of segments that must be
core resident and CP-R assures that it is only given execu~
tion contro! when all its active segments are in real memory.
The total real memory required for the combination of tasks
at any instant may be greater than available. In this case,

—

L3

Root
— 6

1T T 1 11 1T T 11T 17
20 21 22 2324 25 26 27 28 29 30 31 32 33 34

}
20
b.

Linear Tree Structure

35 36
a. Conventional Tree Structure
T T
23 26 29 31 43 48 54 * 5

Figure 12. Tree Structure Options

Secondary Task Structures 13

the lowest priority task is mode inoctive ond its segments
are rolled out to free real memory pages. These poges are
then available to satisfy the higher priority tasks' require-
ments. When enough core is available for the rolled-out

segments to be returned, the inactive tasks are dispatched
and allowed to complete.

LINKING A PROGRAM IN REAL -

VERSUS VIRTUAL MEMORY

The utilization of memory addresses by a program is largely
identical in real and virtual memory with the characteristics
shown in Table 16.

Table 16. Reol and Virtual Memory Progrom Linkage

Real

Virtual

Range is O to last real memory address.

Range is 0-128K.

Access beyond 128K requires real extended oddressing.

Simultaneous access of over 128K words is not possible.

CP-R monitor and services use some portion of real
memory which is only available to the user as "read"
or “read and execute".

CP-R monitor and services use some portion of virtuo!
memory which is only available to the user as 'read’ or
'read ond execute'.

Real Public Libraries load into fixed real oddresses as
established when PUBLIB is OLOADed. User must not
use this real space for any other purpose if he ever
executes with the PUBLIB loaded, even if he doesn't
call it.

Virtua! Public Libraries load into fixed virtual oddresses
os established when the PUBLIB is OLOADed. User must
not use this virtual space for any other purpose if he uses
the PUBLIB. If he doesn't use the PUBLIB, he may use
the virtual space.

Segments that are loaded into the same area in real
memory cannot be simultaneously resident. The user
is responsible for explicitly loading segments (by
use of SEGLOAD) prior to using them and assuring
that his logical flow and overlay structure are
consistent.

Segments that are loaded in the same area of virtua!
memory can not be simultaneously in the mop. The user
must continue to do explicit ACTIVATES and properly
structure logical flow and physical layout.

Segments that are loaded into unique real areas of real
memory can be simultaneously resident and are always
available for use once looded via SEGLOAD.

Segments that ore loaded into unique areas of virtual
memory can be simultaneously resident, i.e., will use
unique real poges. Availability in real memory ond pre~
sence of the pages in the map are controlled vio explicit
system calls ACTIVATE, DEACTIVATE ond ERASE.

The memory required for a segment is always available
since it is acquired at task initiation as a part of the
contiguous space in the privote partition.

The core required for the segment must be acquired when
the segment is octivated, ond is released when the segment
is erased or rol led-out.

Segments ore reloaded from the lood module on
SEGLOAD.

Segments are rolled-out and rolled-in from the disk as
they are DEACTIVATED and ACTIVATED; therefore, can
be modified during execution. They are reloaded from
the lood module on ACTIVATES after ERASES.

User tasks linked such that they overlap in real memory
cannot execute simultaneously. The user must carefully
plon his real memory utilization within the private
partition.

User tasks linked to overlapping virtual oddresses can be
executed simultaneously on different tasks. That is, each
task is completely independent of other tasks, except for
PUBLIB or shared segments.

114 Secondary Task Structures

|

LINKING A PROGRAM USING SIMPLIFIED
MEMORY MANAGEMENT

Secondary tasks may not use the SEGLOAD service, and
may not occess memory addresses which are not in on active
segment. However, the FORTRAN SEGLOAD subroutine
uses the SEGLOAD service, as do mony progroms written
for use under Xerox RBM, from which CP-R developed. RBM
programs also could use memory beyond their octive seg-
ments, To support these as secondary tasks, @ “Simplified
Memory Management" (SMM) progrom structure has been
provided. In this structure, the program, although secon-
dary, is ollowed to use the SEGLOAD function, ond may
occess any address in a range determined when it is initiated;
but it may not use any memory management services.

"Fora background program, the occessible address range starts

ot the beginning of the progrom and continues for the num-
ber of poges specified by the BMEM value. This value
defaults to 32, but moy be set both at SYSGEN ond by
operator key-in. Certain low=core locations ore set to
point at interesting locations in this ronge: K:BACKBG
(X'140') points to the start of the range, K:BCKEND
(X'141') points to the end of the ronge, ond K:BPEND points
at the first word past the end of the program as linked. This
means that K:BPEND ond K:BCKEND define on area which
may be used as scratch storage.

For o foreground program, the range starts at X'6000' and
extends for a number of pages defined in byte zero of cell
K:FSMM (X'217'), This value moy be set only by re-
assembling the SYSGEN processor,

A program with SMM structure is treated by memory man-
ogement as only two segments, which are always active.
(The user, however, deals with the segment structure de-
fined when the program was linked.) One of these segments
covers the entire progrom os it was linked. The other covers
the virtual oddresses between the end of the program ond
the end of the accessible ronge described above, Since
these segments ore alwoys active, the program will be rolled
out whenever there is not enough secondary task memory

for its entire accessible address range avoiloble at its
priority.

MEMORY MANAGEMENT SYSTEM CALLS

Memory monagement system calls may be made only when
o user has been given control as follows:

1. The bockground or foreground loader has transferred
control to the user's stort address.

2. The user's centrally connected primary task has been
given control upon the occurrence of the associated
interrupt,

The function calls ore as follows.

ACTIVATE This function coll activates the specified
segment, The call has the format: J

CALl,7 oddress
where address points to word 0 of the FPT shown below:

word 0

X'52 | 0————0 Segment number

O 1 & 314 5 € 216 ® b 0l 13 16 1305 1 06 W10 01 20 23003 25 20 oot o o0 o

optional (PO in word 0)

"[0— 0{%0 ol%

0 0 2 JTa 9 Tl v 0 dli2 15 14 15000 10 16 WIX 23 20 221 2 2 20 2. 28 » <

optional (P1)

0 0 Error address

Q@ ¥V 2 314 5 0 TEE Y UG 012 13 1 1 THe T ode TR S

v el D2 T

optional (P10)

Completion g
ode

LR AU SRR B E R b R R IO P D O B AT S D Su VRTINS A R S

where

Word 0

X'52 is the code for the ACTIVATE call,

Po is the porameters presence indicator (0 means
absent; 1 means present).

Segment number identification of the user's segment,

Word Options

Pl is the error oddress parometer presence indicator
(0 means absent; 1 meons present).

P‘ is the completion code p#rameter presence in-
dicator (0 means absent; 1 m&ans present).
F, is the abort override indicator, If set, control

will be returned to calling instruction + 1 if errors
are detected and no error address parameter hos
been provided.

Memory Management System Calls 115

Error oddress is the location to return to if errors
are detected. :

Completion code will be posted by the system
indicating the outcome of the service.
DEACTIVATE This function call deoctivates the speci-
fied segment. It has the format:
CAL1,7 oddress

where oddress points to word 0 of the FPT shown below.

word 0
X'53' °|0 ——o0 Segment number
T I T e T s R T N W B TR B N E R E R O REs XD

optional (PO in word 0)

’ 4 Ir
1 0 0 DO 0 7
Qv 2 3Ta 5 6 778 % 10 11112 13 W 15146 17 18 W! 1 X 3N

optional (P1)

0 0 Error address

0 v 2 3Ta.5 6 718 TR B B e T B EDB NS RDINA B

optional (P10)

Completion 0
Code

O 17 1 3145 6718 ¥ 4

where
Word 0
X'53 is the code for the DEACTIVATE call.

Po is the parameters presence indicator (0 means
absent; 1 means present).

Segment number identification of the user's segment.

Word Options

P] is the error address parameter presence indicator
(O means cbsent; 1 means present).

P‘0 is the completion code parameter presence in-
dicator (0 means absent; 1 means present).

is the abort override indicator. If set, con-
trol will be returned to calling instruction + 1 if
errors are detected and no error oddress porameter
has been provided.

Error address is the location to return to if errors
are detected.

Completion code will be posted by the system in-
dicating the outcome of the service.

116 Memory Management System Calls

ERASE This function call erases the specified segment.
1t has the format:

CALl,7 oddress

where aoddress points to word 0 of the FPT shown below.

word 0
X'54' "l0o——0 Segment number
T I T Ty T VR ol £l
optional (PO in word 0)
"o 0{%l0 0%
1 3 3T4a 5§ ¢ 710 9V 1213 w 13716 17 18 1 2% 3

optional (P1)

0 0 Error address

T 2 314 5 ¢ 7189 L " 617 ¥ o0 K]

optional (P10)

Completion
Code 0 0

1T 3314 3 67189 1213 4)] ¥

where

Word O
X'54 is the code for the ERASE call.

P is the parameters presence indicator (0 means
absent; 1 means present).

Segment number identification of the user's segment.

Word Options

P’ is the error address parameter presence indicator
(0 means absent; 1 means present).

P is the completion code parameter presence
indicator (0 means absent; 1 means present).

F7 is the abort override indicator. If set, con-
trol will be returned to calling instruction + 1 if
errors are detected and no error address parameter
has been provided.

Error address is the location to return to if errors
are detected.

Completion code will be posted by the system in-
dicating the outcome of the service.
-
GETPAGE This function call gets pages of memory for
the specified segment. If the segment is not octive, it is
activated. The call has the format:
CAL1,7 oddress

where address points to word 0 of the FPT shown below.

word 0

X!57' 1(0

2 314’5 &7

word 1

3"
[=]
™

ﬂo——onzdk

2 °37s CIRAL I b 1

optional (P1)

0 0 Error oddress
T T YIT T RN W Bl e E R0 T

required (P6)

0 0| VPN low

d 1

required (P7)

VPN high is set equal loVPNl\lgh+ l on
. .completion of the service.

.

Completion code will be posted by the system in-
dicating the outcome of the service.

RELPAGE This function call releases pages of memory
from the specified segment. If all poges ore released, the
segment is erosed. The call has the format:

CAL1,7 oddress

where address points to word 0 of the FPT shown below:

0 VPN high

) 0 1

optional (P10)

Completion
Code |0 0
N 4 914 3 & 710 ¥

where

Word 0

X'57 is the code for the GETPAGE call.

Segment number
Word 1

l’l is the error oddress parameter presence indicator
(O means absent; 1 means present).

PIO is the completion code parometer presence in-
dicator (0 means absent; 1 means present).

F. is the abort override indicator. If set, con-
trol will be returned to calling instruction + 1 if
errors are detected and no error address parameter
has been provided.

Word Options

Error oddress is the location to return fo if errors
are detected.

VPN low s the virtual poge number of the lowest
poge requested. This is the high order 8 bits of
the 17 bit virtuol memory oddress of the page.
VPN low is set equal to VPN high + 1 on comple-
tion of the service.

VPN high s the virtual page number of the highest
poge requested. This is the high order 8 bits of
the 17 bit virtual memory address of the page.

identification of the user's segment.

word 0
X'58' 110 0 Segment number
T T TTTYY TRE R BiRR-1CSR R AR R
word 1
Y10—o0}1]110j0/%9(0 42
2 314 5 6 7V MM e 4 3
optional (P1)
| 0 0 Error oddress
i n
required (P6)
0 0] VPN low
required (P7)
0 0| VPN high
’ i g
optional (P10)
Caéwpleehon 0 0
s PR RN RETR SN R R R R R R 4L R R R
where
Word 0

X'58' is the code for the RELPAGE call.

Pp 1s the parometers presence indicotor (0 means
absent; | means present).

Segment number identification ofshe user's segment.
Word 1

Py is the error address porameter presence indicator

(0 means absent; 1 means present).

Pio s the completion code parameter presence in-
dicator (0 means obsent; 1 means present).

Memory Management System Colls 117

is the abort override Indicator. ' If set, con-
trol will be returned to calling Instruction + 1 if
errors ore detected and no error address parameter
has been provided.

Word Options

Error address is the location to return o if errors
ore detected.

VPN low is the virtual poge number, plus one, of
the lowest page to be released. This is the high
order B-bits of the 17-bit virtual oddress of the
poge. VPN low is set to VPN low, minus 1, on
completion of the service.

VPN high is the virtual page number, plus one,
of the highest page to be released. This is the
high-order 8-bits of the 17-bit virtuo! address of
the page. VPN high is set to VPN low, minus 1,
on completion of the service. ’

Completion code will be posted by the system in-
dicating the outcome of the service.

LocK This function coll locks all active segments in
the task in core memory inhibiting roll=out for the calling
task. It has the format:

CAL1,7 oddress

where oddress points to word O of the FPT shown below.

Word ions

P‘ " {s the error oddress porometer p’mncc'hdicufor
.(0 means absent; | means present).

PIO is the completion code porometer presence in-
dicator (0 means absent; | means present).

F7 is the abort override indicator. If set, con-
trol will be returned to calling imstruction + 1, if
errors are detected and no error oddress parameter

has been provided.

Error oddress is the location to return to if etrors
ore detected.

Completion code will be posted by the system in-

dicating the outcome of the service.

UNLOCK This function eall unlocks oll segments in
the task ond makes them candidates for roll out. It has the
format:

CAL1,7 oddress

where address points to word O of the FPT shown below.

word 0
x'56 %[0 0
0 7 2 3Ts 570 2 N

optional (PO in word 0) -

word 0
X'55' (0 0
234 5 0710 [}

optional (PO in word 0)

"lo ol 0 ol

L] LR AL L IRALE & 1]

optional (P1)

0 0

4 12 - 3 1

optiona! (P10)

letion
C°'E°°d e 0 0

I R At I RIRIR R AR A RDRIE-R-LRE R4 BE B
where

Word 0
X'55' s the code for the LOCK call.

Po is the porometers presence indicator (0 meons
obsent; 1 means present).

118 Memory Management System Calls

" 1o 0 '.Jo ol
0 12 374 5 ¢ 770 % 17 13w 172 0 24 » X I
optional (P1)
0 0 Error oddress

4 [} 1 [y 1] I
optional (P10)

Completion |4 0

< TR T TR B TR S N BN S DR ST

where
Word 0

X'56' is the code for the UNLOCK call.

Po is the parameters presence indicator .(9 means
absent 1 meons present).

Word Options

Pl is the error address parameter presence indicator
(0 meons absent; 1 means present).

PIO is the completion code parameter presence in-
dicator (0 means absent; 1 means present).

F7 is the abort override indicotor. If set, con-
trol will be returned to colling instruction + 1 if
ermrors are detected and no error address porameter

has been provided. : .

Eror address s the location to return to if errors
ore detected.

Completion code will be posted by the system in-

dicating the outcome of the service.

PREFMOOE This function coll, available only to fore-
ground fosks, is used to contro! the availability of fore-
ground preferred portitions. When the function coll is
executed, all pages in the specified preferred partition
that have not been acquired by a tosk will be released
{relecse mode) to the free page pool (STM memory) or oc-
quired from the free page pool (recover mode). The call
has the format:

CAL1,7 oddress
where address points to word 0 of the FPT shown below:

word 0

X'50° % % 0 0 Portition bose oddress

T 2314356718t vnililRBwT 8P 1 i

optional (PO in word 0)

nlo ol%|0 o[,
0V 2 314 5 & & 9 30 11112 13 e 35Tk 17 1 1
optional (P1)
Q———0 Error address
L B A R AL R I RS D A R IR XA K
optional (P10)
Completion
Code 0 0

T N Ty R T T R T T T W T i T R IR Y T

where
Word 0
X'50' is the code for the PREFMODE call.

Po is the parameters presence indicator (0 means
absent; 1 means present).

- MODE is O if operation is the recover STM pages
and is 1 if operation is to release the portition
to STM.

Portition Base Address is the starting oddress of the
preferred portition that the operation is to offect.
If this field is zero the operotion will toke place
on all preferred partitions.

Word Options

P‘ is the error address porometer ﬁmnce indicator
(0 means absent; 1 meons present).

PIO is the completion code parameter presence in~
dicator (0 means absent; 1 means present).

F7 is the abort override indicator. If set, con-

trol will be returned to calling instruction + 1 if
errors ore detected and no error oddress parameter
has been provided.

Error oddress is the location to return to if errors
are detected.

Completion code will be posted by the system in-
dicating the outcome of the service.

IDLI.-OI.ITIIIIILHI

Roll-out and roll-in of mapped secondary tasks is performed
outomatically by CP-R as demand for memory resources
varies, The roli-out process is controlled on o segment
basis with selection of segments to be rolled-out based on
segment state, number of tasks shoring the segment, ond
the priority of the using tasks.

The selection algorithm is constructed such that there are
nine distinct levels of roll-out. Within each roll-out level,
selection of candidate segments is based strictly on the
using task priority; that is, low priority segments will be
selected before higher priority segments.

The advancement of roll-out level is controlled by two
foctors:

1. Roll-out will be stopped when a sufficient number of
memory pages have been acquired to satisfy the highest
priority memory request.

2. Roll-out will be stopped when the highest priority
memory request would require that active segments of
a task of equal or higher priority be rolled out (with
the exception of tasks on long-wait).

The roll-out levels are presented in Toble 17. When level 9
is reached the message "MEM SATURATED" is output on the
OC device and the system will wait for o chenge in memory
status. -

Roll-in of segments that were active when rolled out is per-
formed in priority order. Thot is, highest priority seg-
ments will be rolled in first. Roll-in of segments thot were
inoctive when rolled-out is done when an ACTIVATE call
is issued for the segment, In this cose the roll-in will be
done at the priority of the requesting task.

Memory Manaogement System Calls 1ne

Table 17. Roll=Out Levels e - Table 17. Roli=Out Levels (cont.)

Level Segment Selection - {ovel - Segment Selection :
1 Background inactive segments. 5 Normal| task's inactive segments.
2 Long-wait task's inactive segments, 6 Ovetlay pages.

7 Sackground active segments.
3 Long-wait task's active segments. 8 N I task's octive nts..
4. Requesting fask inoctive segments. 14 Memory saturated,

W

120 Memory Management System Calls

~ 7. ASYNCHRONOUS OPERATION CONTROL

Asynchronous operations consist of independent events that
con take place concurrently with task execution. The
available asynchronous services ond their interfoce with
an executing task are more fully defined in Appendixes H
ond 1, "Job Management” and "Task Management”. The
monitor functions that may operate on these asynchronous
services are described below.

CHECK COMPLETION

CHECK The CHECK function tests the type of comple~
tion of an asynchronous operation Initiated by o no-woit
request. The user specifies addresses, which are entries to
his routines, that hondle error and abnormmal conditions.
At entry, register 10 contains the error or abnormal code
s detailed in Appendix N. Bockground users may take
odvantage of the standard system handling of the error ond
ebnomal oddress in the FPT. The action taken by the sys-
tem in this cose is also detailed in Appendix N. Fore-
ground users must provide both error and abnormal oddresses
when checking (CHECK, no-wait) requests.

Users may specify o CHECK with no-wuait by including o
busy address in the FPT. This oddress is taken (with the
oddress of the location following the CHECK CAL) in
register 8), if the CHECKed operation is not complete. If
no busy address is included in FPT, the CHECK function will
wait for completion before taking the appropriate action.

The CHECK function (through its own FPT)oddresses o DCB
or an FPT, depending upon whether the request was Type |
or Type II. The FPT associated with a request is oddressed
if the request was Type Il ond the completion parameters
were posted in the FPT by the 1/O system. A DCB is od-
dressed if the request wos Type I and the completion porom-
sters were posted in the DCB.

For non=I/O operations, the CHECK request always od-
dresses on FPT.
The CHECK function call is of the form

CALY, 1 oddress

where address points to word 0 of the FPT shown below.

word 0

. X129 0 0 DCB or FPT oddress

B B AE N ECRALN AL RO RN L) ; £] v
word 1

'.'Hc o:,]o 0[50 o5
LI AR ACE B AL O T Y

optional (P1)

0 0

Error oddress

optional (P2)

0 0 Abnormal address
I N A RAL A BUCE R] T T

optiona! (P3)

0 0 Busy oddress
T T T YT YR O W e T]
where .
Word 0

X'29' s the code for the CHECK function.

DCB or FPT oddress is the address of the DCB of
FPT where the completion status is posted. Pyg
determines whether this field contains o DCB or
FPT oddress.

Word 1

Py is the error oddress parometer presence indicator
(1 meons present; 0 means absent).

Py is the abnorma! address parameter presence in-
dicator (1 means present; 0 means absent).

P3 is the busy oddress parometer presence indica-
tor (1 means present; 0 means absent).

Pjo is o bit indicating whether c DCB or FPT is ad-
dressed (0 means DCB; 1 means FPT).

FO is the long woit indicator; makes secondary task
a prime candidate for roll-out.

F7=1 specifies on abort override (retum to next in-
struction) if an error occurs.

Word Ogions

Error address is the oddress of the entry to the
wer's routine thot will hmdl.:ertor conditions.

Abnormal address is the oddress of the entry to
the user's routine thot will handle abnormal
conditions.

Busy oddress is the oddress of the entry to the

user's routine that will handle the “request busy"
conditions.

Asynchronous Operation Control 121

SELFPT (Delete olquddqula) SR LT i am

" This function forces prematurs completion and/or eborts
the request to the greatest possible extent. This function
is of the form
CALY, 7 address

where oddress points to word 0 of the FPT shown below.

word 0
‘X4 0 0 DCB or FPT oddress
T TN wm

word |

131500 0 :c 0 ol%
L 2RLER BR ALEE R IRALZ

optional (P1)

0 0 Error address

optional (P2)

0 0 Abnorma! address
’ 1 £ Y
optiona! (P3)

0 0 Busy aoddress

where

Word 0

X'47* is the code 1o call DELFPT.

DCB/FPT address is the location of the FPT (DCB
in Type I 1/O only) with which service wos origi-
nally requested.

Word 1

P' indicates the error oddress is present.

'2 indicates the abnorma! address is present.

P3 is the busy oddress parameter pressnce indicator

(! means present; 0 means absent).
P indicates either the FPT or DCB address in

10 ord 0 (1 means FPT; 0 meons DCB).

122 CHECK Completion

: “f;,t.\:L?" -. indicates that if an optional error and MI

-

address is reached but was not provided, retum is
10 the next imstruction versus abort.

Word options

Eror oddress s the addrem where oll non-1/0
errors exit, plus any 1/O errors of the FPT error
oddress class.

Abnormal address is the return location for FPT
ebnoma! oddress 1/O errors.

Busy address is the oddress to return to if the ser-
vice being checked is not complete.

If the FPT or DCB oddress provided does not have a service
outstanding, the FPT or DCB is not altered in any way and
the service normal, error, or cbnormal exit is taken, based

on the lost completion in the FPT/DCB whose service is
being deleted.

If the service is still in process, it will be processed until
o wait condition occurs.

If P3 = 1, o busy oddress is provided and will be taken.
The user must issue another CHECK or DELFPT later.

If P3 = 0 ond the service being checked is notone that can
legally be woited for, the task is aborted. Otherwise, the
task will wait for the service to be completed, at which
time the exits described below will apply.

If the completion was normal (completion code = 01), the
status ond any feedback data will be stored per the original
FPT, ond the next instruction exit will be taken.

_ If the completion was in error (on 1/O services, those con-

ditions taking the FPT error exit; on all other services, any
nonzero completion code), the status and feedbock data
will be stored per the original request FPT. R8 will be set
to the DELFPT CAL+1. Byte O of R10 will be set to the
error code. Bytes 1-3 of R10 will be set to an address; to
the DCB oddress if the request was for 1/O; to the request
FPT oddress if the request was another service.

If on error address wos provided on the DELFPT FPT, con-
trol will be retumed to it.

If no error address was provided but F7 = 1, the normal exit
will be taken.

If no error address was provided and F7 = 0, the callen task
will be trapped to the BADCAL trap (X'50').

If on abnormal 1/O completion occurred, the logic is o

above using the abnormal address parometer. That is, the

original FPT is completed, R8 and R10 are set and the users
obnormal oddress is given control. If the abnormal address
is not present, return is to the Instruction following the

DELFPT call with R8,R10 unchanged.

Tnlumfpmvldceln‘yddns', on DELFPT of services
for which wait Is lllegal. Requests without a busy address
by a xuk will couse the caller fo be frapped.

Fields in the original request FPT which will be stored on
completion are the completion code (optional) and data
from the data area (optional).

Service requests should be deleted only once after they
are completed. If a busy address is provided and CP-R exits
to It the service is still in process. Once o normal, error,
or abnormal exit is kaken, the service has been deleted.

Services con only bedeleted by the original requesting task
or another task in the same lood module. The quiescing
of the service ond removal from the system will vary as
o function of the activities in process. Waits may occur
in order to bring the request to o controlled termination.
The busy oddress will be used if provided when @ wait
is encountered.

Multiple, simultaneous deletes of a service by more than
one task cannot be allowed. This has the following
significance:

o A CHECK or DELFPT on g service which wos requested
with wait will cause a busy return (if provided) or trap
(no busy retum is provided).

e A CHECK or DELFPT on a service which is in CHECK,
DELFPT, or TEST processing by another task will cause
o busy returmn (if provided) or o trap (no busy retum
provided).

These conditions can be avoided by proper coding of
CHECKs and TEST calls, or by only allowing one of the
tasks to do oll checks and/or tests.

If a task does a service request without wait using an FPT
in registers, the register content must be the same ot check
time as it was when the service was requested.

WAITALL This function call allows a task to wait until

all previously requested no-wait services have completed.

§ has the form
CALL,7 oddress

where oddress points to word 0 of the FPT shown below:

‘optiona! (PO in word 0)

Word 0
0| X40]’., 0 0
T 2 314 5 ¢ 710 ¥ 1)] N

'n_:O D%l 0 0

optional (P1)

0 0 Error oddress
’ 4 » T 5] EL
optional (P2)
0 0 Abnormal address l
e e A S IR AL LA R R RCROCRAL T 7 3
where
Word 0 7

X'40' is the code identifyingthe WAITALL function.

PO is the word-]1 parameter presence indicator
(1 indicates present).

Word options
P indicates the error oddress is present.

P

FO is o long-woit indicator, making o secondary
task a prime candidate for roll-out.

Indicates the abnormal address is present.

Error address s the address where all non=1/0 errors
exit, plus any 1/0 errors of the FPT error address
class.

Abnormal oddress is the return location for FPT ab~
norma! address 1/0 errors.

¥ any previously requested service is complete, o CHECK
will be performed; that is, the completion code and data will
be moved to the originally requested FPT. WAITALL will
return only If it hos checked and deleted oll outstanding
services.

Tasks cannot use WAITALL if any previously requested service
cannot legally be waited upon. WAITALL will wait for all
services requested by any fask in the caller's load module.

If any of the "checked" services completed in error, registers
8 ond 10 will be set as shown in Appendix N and the retumn
will be to the specified error or abnormal address in the
WAITALL FPT. If any of the services completed in error ond
the error oddress is not present, the task will be aborted.

CHECK Completion 123

WAITANY This function call allows a task fo walt for
any previously requested service fo complete. WAITANY
has the formot ' ;

CALL, 7 oddress

where address points to word 0 of the FPT shown below.

Word 0

l xX'41"]'oo 0 FPT or DCB oddress

U RALE I BALIE I} t

optiona! (PO in word 0)

\[2| 0 0"0 0 0
T TSI Ty Tate v ¥
optional (P1)
0 0 Error address
optional (P2)
0 0 Abnomal address
’ 4 3] 3 " 1 . T
where
Word 0
X'41" is the code identifying the WAITANY
function.
Po is the word=1 parameter presence indicator.
FPT or DCB oddress is the field where WAITANY

returns the oddress of an original service-request

| . FPTor DCB (for type 1 1/O) which has been com-
pleted and checked. If FPT or DCB oddress is
zero on return from WAITANY coll, no outstand-
Ing requests were found.

Word options
l’I indicates the error oddress is present .
P2 indicates the abnormal address is present.

Fo is the long-wait indicator, making a secondary
task o prime candidate for roll-out.

Ervor oddress is the oddress where oll non-VO'
errors exit, plus any 1/O erors of the FPT error
oddress closs.

Abnormal oddress s the return location for FPT ab-
normal oddress 1/0 errors.

I any service is complete, 0 CHECK will be performed;
that Is, the completion code and data will be moved to

124 CHECK Comgpletion

the original request FPT. WAITANY will then return o the
caller. The oddress of the FPT that was checked is stored
In the WAITANY FPT. . .

K the "checked" service completed in error, registers 8
and 10 will be set as shown in Appendix N and the return
will be to the specified error or abnormal oddress in the
WAITANY FPT,

If no services ore complete, WAITANY will not return con-
trol until at least one service hos completed. WAITANY
will return control immediately if no service requests are
outstanding .

Tasks may not use WAITANY if all previously requested
services cannot legally be woited upon. WAITANY will
wait for any service requested by any task in the caller's
lood module.

Services originally requested using FPTs in registers will
give unpradictable results on WAITANY, *

TEST This function call allows a task to test if any pre-
viously requested services have completed. TEST is like o
WAITANY which never WAITS but always returns control to
the user. This function call has the format

CALl,7 address

where address points to word 0 of the FPT shown below.

Word 0

X'42]'o 0 0 FPT or DCB address

LR BE AR BUIRALI) i

optional (PO in word 0)

"i%2|0 OI
YV 2314 5 6 7100V 1 [1 N

optional (P1)

0 0 Error address
‘WWW. ¥
optional (P2)

0 0 Abnormal oddress
R NE R IR NERALEE AU R L T T I

-
where
Word 0

X'42' is the code to call the TEST function.

’0 is the word-1 parameter pnunoe indicator
(l indicates present).

FPT or DCB oddress is the field where TEST returms
the oddress of an original service=request FPT or
DCB (for Type 1 1/0) that has been completed and
checked. I FPT or DCB address is zero on return
from a TEST call, none of the outstanding requests
ore completed.

Word options
P Indicates the error oddress is present .

P, indicates the abnormal oddress is present.
Error oddress is the oddress where all non=1/0 errors

exit, plus any 1/0 errors of the FPT error address
class.

Abnormal address is the return location for FPT agb-
normal oddress 1/0 errors.

¥ a service is complets, a CHECK will be perfarmed; that

" is, the completion code and data will be moved to the

original request FPT ond the oddress of the FPT that was
checked is stored in the TEST FPT. If no service is com-
plete, TEST will return control immediately and the FPT od-
dress field in word 0 of TEST FPT will be zero.

If the "checked service completed in error, registers 8 and
10 will be set os shown in Appendix N and the return will be
to the specified error or abnormal address in the TEST FPT.

TEST will check any service requested by any task in the
caller's lood module.

Services originally requested using FPTs in registers will
give unpredictable results on TEST.

'S ¥)

CHECK Completion 125

e coavmesmce

¥ -

The CP-R Debug monitor service provides the foreground
ond background (batch stream) user witha vursatile set of
commands that allow the user to modify, exomine and con-
trol the execution of a job. Both primary and secondary
tosks may use the debug service; however, only one task
per job can have debug control ot any given time.

The Debug monitor service consists of a set of CP-R over-
lays that are called to perform the requested Debug func-
tions. Debug control of a task in a given job can be
established by any of the following:

e Debug system call.

o Debug Key-in.

o Debug option on INIT system call, key=in or con-
trol command.

e Debug option on RUN system call.
o Debug option on IRUN control command.

Control of Debug is through o set of operational labels as-
signed to the devices that will be used to input commands
and output dumps, snapshots, etc.

These operational labels are given default assignments ot
SYSGEN time but the user is responsible for establishing
the appropriate assignments in the JOB to be debugged.

Debug has provisions for accepting on unsolicited interrupt
or break function that allows the user to interrupt or break
out of thetask being debugged and to give control to debug.
Two methods are provided for this feature. At SYSGEN
time the user may associate an external interrupt with a key-
board printer (TYxxx device type). When one of these
interrupts is received, Debug will associate the interrupt
with @ JOB using the specific keyboard printer end will
couse any task that has Debug control to retum to Debug
for input. For primary tasks this control break function
only occurs when the task is returning from o monitor ser-
vice call. For secondary tasks, control can be retumned
to Debug ot any time.

The second method of causing thisbreck function is fromthe
operators console by using the BREAK key=-in.

DEBUG CALL

The Debug monitor service may be invoked by execution of
the following monitor service eall.

126 CP-R Debug Service

[
b

DEBUG This coll will establish Debug control in the
nomed task. The call has the following format
CAL1,7 oddress

where oddress points to word 0 of the FPT shown below.

word 0

xes' hilo 0
LB B AT BORAL N a T 57
word 1

"
o
< "

lol3]%jo—o[%W"

DR BECIRAL

optional (P1)

Error oddress

0 0

optional (P3)

Task nome
optional (P4)
Task nome
optional (P10)
Completion |, 0
\ R] ’I‘el ¢ i n
optional (P11)
Job nome
optional (P12)
Job name
4 [] 1 - i
where
Word 0 1

X'65' is the code to initiate the call.

Word 1
P is the error oddress parameter presence indicator

L (0 meons absent; 1 meons present).

P3-Py ore the task nome parometer ptme
indicator (0 mecns abeent; 1 means present).

P‘o is the eunploﬂoﬁ code porometer presence
indicator (O means cbsent; 1 means present).

P11=Py2 ore the job nome porometer presence in-
dicators {0 means absent; 1 means present).

Frel is the abort override indicator. If set, con-
trol will be returned fo colling instruction + 1 if

errors are detected ond no error address parometer
has been provided.

Word &ﬁons
Error address is the retum oddress if errors are found.
Task name is the name of the task to be run with

DEBUG. The caller's task is the defoult name.

Job name is the name of the JOB in which the
nomed task is being executed. The caller's job
is the default name.

METHOD OF OPERATION

To make the most effective use of the provided Debug fo-
cilities, the user should assemble, load, ond run his job
with a knowledge of Debug functions,

The Debug service allows the user to reference locations
by using symbols. These symbols may be defined by the
user at debug time ond need not be reloted to the symbols
in the user's progroms. If the user wants Debug to intercept
traps he should not moke his own trap CALs.

After the user has established the Job/console /operational
lobel assignments, ony INIT of o task with Debug will
transfer control to Debug at the comsole assigned to that
job. This will cause the mesage TASK 1S XYZ to be out-
put where XYZ is the name of the task being initiated.
Debug then prompts with @ ":". At this time, the user can
change the prompt if desired, using the NP command. The
user con modify the task or start execution of the task.

Debug uses the following oplabels for communication:

DL is the oplabel for Debug log messages. These

, include messoges describing trop conditions,
mesoges from snapshots and other control out-
put. K not otherwise specified, DL will be
defoulted to the user's debug console.

DI is the oplabel for Debug input. Allon-line
commands are read through DI.

] 4 is the oplobel used for reading potches. The
input read on DP is assumed to be in the for-
mot described in the *Debyg Commonds Used
On Line ond From Batch" section.

DO is one of the oplabels used for Debug output.
This is normally assigned to the line printer
ond may be used by Debug for longer outputs.

P1,P2 are the other oplabels used for Debug out-
put. Eoch of these con be assigned to o
device and used for output from dump or
snapshot commands.

DEBUG INPUT

Background jobs using Debug services from the batch stream
con assign DI to the control command input. When a job
Is to be debugged on-line, the DI oplabel is assigned to a
keyboordprinter. There is onlyone keyboard printer allowed
per job and this is designated the control console. Although
input and output may use other devices, all on-line control
comes from the control console. The control console may be
a debug console or the operators console. Input may also
come from the DP (Debug Patch) oplabel via o P command.

When a user is debugging on=line, all unsolicited messoges
and requests for input are routed to the control console.
An interrupt is provided at each control console to allow
the user to initiate unsolicited input.

Debug is normally used from o debug console. This is o
stondard keyboord printer, but it is distinct from the oper-
ators console. It has on extemal interrupt leve! available
for unsolicited input.

The operators console can be used as o contro! console. In
this case, the keyboard printer and the console interrupt
will be shared between Debug and CP-R, All Debug output
and requests for input are easily discemable from CP-R out-
put, since CP-R messoges start with |1 ond Debug messages
start with the user=specified prompt character. The user
will immediately know whether to respond to CP-Ror Debug.
If the user wishes to do on umsolicited input to Debug he
should do a key=in fo CP-R as follows: CINT XX, where
XX is the hexadecimal number of the interrupt allocated to
Debug or use the BREAK key=-in. Output messoges from
Debug and CP-R will be queued ond will appear on the
OC device.) -

o
DEBUG OUTPUT
Although o user can only have one control device for

each job, he can use multiple output devices. Each sep-
arate dump con be routed to o different output device.

Method of Operation/Debug Input/Debug Output 127

K no output device is specified, the output will be done
on the contro! comole (DL) device.

A user can clso output to ony stondard peripheral. The
A commond is used to associate devices with oplabels, If
multiple users select the same output device from Debug,
their output will be intermixed. The users must do their
own device allocation to avoid mixing output.

DEBUG TRAP CONTROL
When a program is initioted with Debug, it connects all

traps (X'40'=X'50') to an entry in Debug. When a trap
occurs, Debug prints the following message:

:TRAP X/Y AT SYMBOL + VALUE
where
: is the trapped fask user prompt character.
is the hexodecimal value of the trap.

X

Y is the CC set by the trap logic. For traps
40 ond 42, CC identifies the type of trap. De-~
bug will then prompt and request input, If o
trap occurs in DEBUG the message

:TRAP X/Y at DEBUG + VALUE

will be printed. In this case the user's registers
and the value of $1 will not be modified. Traps
will occur in Debug if the user attempts to dump
no-uccess memory of modify write protected
memory, Any attempt by the user to connect
traps will override DEBUG trap management,

DEBUG COMMANDS

Debug commands are provided fo allow the user to modify,
examine, and monitor the execution of histask. The com-
monds and o description of their functions follow.

Assign device to DEBUG oplabel
Control segments

Modify memory

Insert code logically

Give a value to a name {symbol)
Read patch cards

Sronch to the users code — move snapshot
Dump selected parts of core
Execution contro! (task)

Remove snopshot, insertion, or names
Lock at memory for o match

Quit task(s)

Snapshot definition

0>

U ¥ ek LE-L BB Sak 4

128 Debug Trap Control /Debug Commands

BEBUG COMMAND SYNTAX

The required debug command formots are the same whether
commands ore read from o user's debug console or from the
patch file. All patch cards must have o command identifier
os the first character, When Debug is used in the patch
mode, oll commands are read and interpreted by Debug
immediately. Debug uses monitor CALs to do its input/
output. Eoch command must be contained on one line.
Multiple blanks are treated as a single blank and blanks are
used as field delimiters where shown in the commands.

Each debug control card will be of the form:

(Command Identifier options

The Command Identifier must be delimited by one or more
blonks.

Eoch control console commond will be of the form:

Command Identifier options ®

For debug commands the following definitions and conven-
tions will be used:

symbol From one #o eight EBCDIC characters as
described in the AP Assembler character
set. One choracter must be an alpha-
betic charocter. All Sigma machine
mnemonics are reserved fo Debug. $is
the value of the current location counter
{first location patched) for modifies and
Inserts. $C is the current value of the
condition codes. $F Is the current valuve
of the floating controls. $1 is the value of
the imstruction counter (the next loca~
tion fo execute).

value From one to ten numerals or hexodecimal
values. If the number is preceded by a
*.", the number will be treated as hexa-
decimal. A value may be preceded by
a +or = sign.

register 1. A positive value €15.
, -
2. A symbol whose valve is £ 15.

foc 1. A positive value.

2. NAME, where NAME is o symbo! de-
fined in Debug.

——

]

loc 3. Sums or differences of elther of the
{cont.) above two forms,

4. One of the obove forms preceded by
on "%, "*1" refers to the locotion
pointed to by register 1.

word 1. Asigned (plus sign {+) optional) hexa-
decimal or decimal volue.

Examples: =6, 100,.2A, ~ AF.

2, A nome plus or minus on optional off-
set. The offset can be either a hexa-
decimal or decimal value. Address
resolution for the name can be speci-
fied by using the AP Assembler choroc-
ter set notation: rr(name) toffset where:

r=BA, HA, WA, or DA

Word resolution is assumed by default,
Note that both BA(ALPHA) + 3 ond
BA(ALPHA + 3)are legal. If the name
specified has not been defined some-
where in the task, it will be flogged
as undefined.

3. An EBCDIC constont (limited to four
characters contained in quotes). Trail-
ing blanks will be provided.

Examples: 'ABC’, 'A’.

4. A symbolic instruction. The mnemonic
field of the instruction must be on
EBCDIC operation code. The register
and index fields con be any location
in the proper range. The address field
con be any location in the proper ronge.

The following commands are provided by Debug:

A The assign command is similar in function to the
STDLB cal; it changes the assignment of @ Debug oplabel
on o job basis.

The form of the A command is

A oplabe! [,orea] ,nome

where
oplabel is a Debug oplabel.
area is o RAD corea if the label is being ossigned
to a RAD file.

name specifies o physical device nome, a num-
eric zero, the nome of a RAD file (if oreo is
specified), or another oplabel.

-

€ The form of the control segments commond is

v .

CA
[CD seg number
Ct

where
CA octivates the desired segment.
CD deactivates the desired segment,
CE erases the desired segment,
seg number if the unique number of any valid seg-

ment in the task, A segment must be active be-
fore ony patching in o segment can be done.

M The modify command reploces one set of locations
by another set.
The form of the M command is

M lof:/wordo[/word]/ .. ./Word"]

where
loc s the first memory location to be modified.
word; Is the content fo be inserted in the designoted

location., The i th word is inserted into loc +1i.

l The insert commond designates insertion of one or more
instructions logicolly before (IB), after (IA), or replocing
(IR) the instruction ot the designated location.

The form of the | commond is

18
l:;:] loc/wordof/word]. . ./wordn]

where

18 designates Insert Before.
IA designates Insert After, ¥
IR designates Insert Reploce.

loc is the location that insertion is done with re-
spect to is the i th change thot is to be logic-
ally inserted.

The information for the insert is maintained so that
an insertion may be removed if desired.

Debug Commands 129

0

] The nome commond associates a word (value) with dump is of the form
a symbol in the currently open task or evaluatesan expres- n
sion ond retums a hexadecimal value. This commeand con [[;iu

loc2} [format]{;, oplabe l]] !

also change the Debug prompt character for o task, loc‘ ’ ,
The form of the N command is where
N |o¢:I is the start location of the dump in
{NP [:ymbol][/word] the currently open task.
NL

loc, i the last location to be dumped if
the command is DL. If locy is not speci- :
fied, only locl will be dumped.

where size is the number of locations to be dumped
in a D command. If not specified, the de- .
N specifies associate a symbol with o word value. foult size is 1.
NP specifies the first character of the symbol as format s one of the following:

the new prompt character. E for an EBCDIC format dump.

NL specifies evaluate the word. D for a signed decimal format
dump.
symbol is any AP symbol. B for a binary format dump.
word is any valid expression asdescribed previously. F for o hexadecimal format
dump.
If no format character is present, the dump will
be defaulted to hexadecimal.

P The potch command couses Debug to read patch cards
from the DP oplabel. The form of the P command is oplabel is one of the defined Debug y
P oplabels,
[PE} If no oplabel is present, the dumps will be —
output on the DL oplabel.

If the D command has no arguments, the next sequential cell
(following the last dumped cell) will be dumped.

where

P causes o read from the DP device.

. E The execution control command allows the user to stop
PE returns control to the DI device. and start a task in his job.

Debug will continue to read from the DP oplabel until it The form of the command is

encounters a PE command or an EOD.

[E:} task nome

D The dump command allows selected areas of core to

be output. where

The form of the D command is

EH designates execution halt (stop). “a
{gL] dump][/dumpz. . ./dumpn] This command causes a STOP CAL to be done to

the task. This will inhibit the named task from
further execution unti! o START is done.

where sach dump after the first one must be preceded EB designates execution begin (start). This will
by o "/". ' start o secondary task via o START CAL. -

120 Debug Commands

-~

R The remove function will remove elther snapshots
or insertions and replace the original contents of the
focation(s). X)

1e form of the R commond is

R

R Hoc,[Noc/. . floc]
RN

where

R specifies removal of any snapshots or insertions
in locy through locy.

RS specifies removal of all snapshots.
Rl specifies removal of all insertions.
RN specifies removal of all nomes.

loc. are the locations where removal is tobedone.
' When the removal is done, the location isreturned
to its original state and the potch is removed from
the Debug work space. No locations are allowed
for either RS or Rl commands. Inserts may not be
placed over a location already accommodating an
insert or snap.

B The branch command is used to start execution at the
specified location in the currently open task and to move o
snapshot if desired.

The form of the B command is

{:M} [snep loc), [loc]

where

B designates a branch to loc. If no arguments are
present, the task will continue from the current
active snapshot or program start ($1). This option
ollows the user to continue from a snapshot or start
at the entry of a newly initialized task. The snap
loc porameter will be ignored if present.

BM designates branching to loc ond moving the
snapshot location. This command should be used
only when control has been transferred via o snap-
shot and breakpoint. The BM will move the snap-
shot from its original loc (L) to the specified snap
loc and execution will resume at the specifiedloc.
If loc is not specified it defoults to L. If neither
orgument is specified, loc defaults to the original
loc (L) ond snap loc defoults to L + 1. This gives
the user a stepping function which allows him
to execute instructions line by line. This com-
mand with no arguments will not allow the user

%o step o branch instruction. ¥ it is desired to
continue execution from the current snapshot and
move the snopshot the command *BM snap loc” can
be used. '

L The look command allows the user to search memory
for a certain pattern,

The form of the L commend is

K. foc,, |ocz/word '[/wa’dz]

The search will be conducted between locy and locy for o
match to word;. Each location wiil be masked (logical and)
by word, before being compared word;. If wordy is not
present the default will be X'FFFFFFFF'. All locations that
motch and their contents will be printed on the control
console.

Q@ The quit function allows the userto terminate @ single
task in his job or to terminate the whole job.

The form of the Q commend is

[g.l} mame

where
Q terminates the named task.

QJ terminates the entire job.

" The W command allows the user to compress debug
workspace and moke returned spoce ovailoble for extensions
by name, insert, and snap commands. Should there be snaps
or inserts associated with currently nonexistent or protected
spoce, the squeezing will be incomplete and will return on
ervor report.

SESUG SNAPSHOT

There are two types of snapshots that can be specified. The
snapshot and confinue does the dumps If gequired, and con-
tinues execution after the snapshot. The snapshot and break-
point executes the mapshot as above and then goes to the
control console for input. Either type of sapshot can be
specified in patch commands.

$ The S commond inserts {in the same manner as the com-
mand 1B) o snapshot at the designated location, so that when

Debug Commands 131

control pames through the location, the following fronspires
prior to executing the instruction that wos at loc:

The following is output on the DL oplabel.
:$SNP AT loc

where -

: is the prompt character for the task where the
onap is.

loc is the locationspecified ino previous S command.

The form of the S command is

{§C] loc /dump requests

where

S is a request fo snopshot and transfer control (snap-
shot ond breakpoint) to the control console for De~-

bug input.
5C is o request to snopshot and resume execution.

loc is the location in the task where the snapshot
is to be placed. The location cannot aiready be
associated with an insert or snap.

-

requests ore the some format specified in .
the D (Dump) command. Each dump specification
must be preceded by a */*. Only five nch re-
quests may be accommodated.

DEBUG ERROR MESSAGES

A message is output for all Debug errors. Debug will then
request input from the Debug control console. The follow-
ing message is output to the control comsole.

ERR N IN FIELD M
where

N is o hexadecima! value between 1 ond FFF. Al
errors in the range FFO to FFF are system errors and
indicote o system malfunction. Other errors ore
user errors.

M s o decimol volue that indicates the field where
the error was detected. The first error found will
abort the command. In reporting the field count,
Debug considers the command identifier to be
field 1. Eoch subsequent delimiter, including
blank/+ = ()., '* terminates a field.

All errors ore detected before the command has
been processed except those indicated below by
on *. The indicoted commands are processed up
to the point of the error. The command is then
aborted and further input is requested.

The Debug error numbers and their meaning ore itemized
in Table 18.

Table 18. Debug Error Messoges

Error

Number Description of Error

n An empty field after a delimiter is invalid.

12 A. followed by o nonhexodecimel value is illegal.

13 The indicated field should be a number or a defined symbol.

14 Invalid oddress resolution hos been used.

15 An illegal left parenthesis has been used.

16 A right parenthesis is followed by illegal syntax.

17 An illegal EBCDIC constant has been specified.

22 Iliegal hexadecimal volue has been specified.

27 Undefined symbol.

28 tllegal chorocter.

31 Register ond oddress field missing. -
32 Register missing. -
3 An * is illegal in the register field.

34 A register designation must be followed by a blank.

35 An empty oddress field is illegal.

36 The index field is missing.

37 An * is illegal in the index field.

38 The specified index is too large.

132 Debug Error Messoges

T

Teble 18. .Debug Ervor Memages (cont.)

Error

Number Description

39 The specified register volue is illegal.

4] No location has been specified.

42 No words have been specified.

43 Too many modifies or inserts have been specified.

5 lllegal format specified.

52 Illegal size in ¢ D commond.

53 Hlegal oplabel specified.

54 Illegal use of indirection.

61 More than two continuation records have been input.

62 The command identifier is undefined.

64 The input command is illega!l from the Patch (DP) device. Delete snaps, or inserts to release

space.

71 No more work spoce avoilable.

81 The nomed location contains neither an insert nor @ snapshot.
82 RS and R1 commands cannot have arguments specified. .
83 R commands must have arguments specified.

89 Workspace alreody compact.

8A Workspace has unidentified block.

88 Snap or insert linkoge inoccessible.

8C Program link fo snap or insert is inappropriate. \
91 Invalid leading delimiter in the Dump command.

92 Invalid oplabe! specified in @ dump command.

Al No segment specified.

A2 Illegal segment.

A3 Hlega! completion status from the CAL.

Bl An insert to a register is invalid.

B2 An insert or snapshot is already present in the specified location.
(o) A location must be specified for a snapshot.

C2 A snapshot to a register is invalid.

Cc3 The delimiter after the location is invalid.

C4 A snapshot or insert is already present.

(o] Too mony dump requests.

CE The Messoge option is not ollowed.

CF The condition option is not allowed.

DI The delimiter ofter the location is invalid in o BM command.
D2 No snapshot is octive.

El Start, end, or word | are not present.

E2 The delimiter after stort, end, or word 1 is illegal.

F1 Illegal character in the named symbol.

F2 A value must be specified in an N command.

F3 The delimiter ofter the symbol name is illegal.

F4 An NL commond must have an expression.

101 Hlegal charocter in Task Name.

102 STOP/START esror.

m lIllegal character in Task Name.

112 SIGNAL Error.

121 Illegal charocter in Task Name.

122 Error in TERM coll.

131 Illegal Oplabel.

132 Illegal Delimiter. -

133 Illegal File Name.

134 Error in STDLB caoll.

1F1 Write Ervor (DL).

1F2 Reod Ervor (DI).

1F3 Write Error.

FF1 A patch element type is foo large.

FF2 A potch element size is too large.

.Debug Error Messoges

133

8. CP-R MEDIA SERVICE

The CP-R MEDIA service provides the operator focilities
for performing media ccnversions concurrent with the op-
eration of foreground and background jobs, ond foreground
tasks the ability to submit permanent disk files for loter
printing on a line printer.

KEY-IN CONVERSIONS

The MEDIA key-in allows the operator to request conver—
sions from

file ft:::e
ta) .
punch

or from file 1o keyboard printer.

Multiple key=in requests may be made.

Each request will
be queued for later processing.

FOREGROUND CONVERSIONS

For the foreground tasks, the MEDIA service call provides
a delayed printing mechanism. The task can output printer
destined information to o permanent disk file, and request
the MEDIA task to copy the file to the printer. Multiple
requests can be mode by ofe or more foreground tasks
causing the requests to be queued for later processing.

Requests from a foreground tosk's service coll do not
explicitly state the destination of the printed output. The
destination is implicitly the MO operational label in the
CP=R job. The default assignment of the oplabel is deter=
mined during System Generation (SYSGEN), but may be
changed by the STDLB key-in.

MEDIA PROCESSING

MEDIA handles oplabels in a slightly nonstandard monner.
Oplabels are converted to the device or file to which they
ore owsigned. This is done by the key=in when the request
is accepted ond for o foreground service request when it
is reody to be processed. This means thot changing the
assignment of an oplabel during @ MEDIA conversion has
no effect on that conversion. This is done to protect the
integrity of @ MEDIA output.

134 CP=R MEDIA Service

A

MEDIA performs its consersions as an independent task in
the CP-R job concurrently with other tasks in the system.

Eoch conversion request, os it is entered into the queue,

is assigned an identification number. This number is typed
on the operator's console (OC) device for key=in requests,
ond is used to identify output for the request. Printer out-
put will be identified by o breck poge containing the nome
of the requesting task (this will be *"OPERATOR" for key=-in
requests) and the identification number.

Queved requests are processed in the following order:
1. Key-in requests;

2. Service requests, by priority.

When the Symbiont processor is in use for Background jobs,
MEDIA will coordinate with the Symbionts for usage of
devices common to both. Any requests to use o device
already in use by the Symbionts causes that request to be
delayed until the device is free. All devices used by either
processor are freed ot the end of each job or request to
allow the other occess. This insures that o job's or con-
version's output will be contiguous and not intermixed with
other output. Outputs may alterncte between MEDIA and

Symbionts.

MEDIA SERVICE CALL

MEDIA The Media service call allows foreground
fosks fo submit permanent disk files to the CP-R Media task
for loter processing. The Media task, when processing the
request, will copy the file to the MO operationa! label as
defined in the CP-R job.

The call for this function has the following format:
CAL1,7 oddress

where address points fo word 0 of the FPT shown below

word 0
X'59° 1‘;??0—0 DCB oddress
TITT‘IO‘II! }
word 1 -
',oo:o—o'.o:,]o—o'o of>
AR} B BRALIRJ x 3

optional (P1)

0 ——0 Error oddress |

optional (P4)

0

0 Areqa and file nome oddress

optional (P8)

I AR 3K

0

M B I E R R A B E RN TR A R RN R LR R RAR]
optional (10)

ampleﬁon
Code |°

BB IDERRAUEA BUCERR KA B ERE R T L R XD
optional (14)

*

0 0

account name address

U 2 REN S IR AT NN BINHE R W IR R R R RE R B R R

Word 0

X'59' is the code that specifies the media call.

DS is the double space option that is meaningful
only when NVFC = 1. If present (DS = 1) the
printed output will be double spoced between
eoch line of output. If DS is zero (0), then single
spacing will occur.

NVFC is the verticol formot control option. If
present (NVFC = 1) then printer output will toke
ploce as specified by the DS parometer, 1f NVFC
is zero (0), then the first byte of eoch line imoge
is interpreted os o format control chorocter.

DEL s the delete file ofter printing option. If
present (DEL = 1) the RAD file specified fo be
printed will be deleted after the printing opero-
tion has successfully been completed. If DEL is
zero (0), the RAD file will not be deleted.

DCB oddress if parameter P4 in word 1 is not
present (=0), then this field is interpreted os
the oddress of o DCB that is assigned to the RAD
file that is fo be printed. If the DCB is not as-
signed fo o RAD file, then an esror condition
is generated.

Word |

4 is the optional error oddress parometer presence
Indicator (0 means absent, 1 means present).

#4 s the parameter presence indicator for the

optional file nome and area oddress parameter
(0 means cbsent; 1 means present).

P8 is the parometer presence indicotor for the

optional priority parameter (0 means absent; | means

present).

P10 s the porameter presence Indicotor for the
~ optional type completion code parometer (0 indi-
cates no posting; 1 indicates the mpleﬂon code
is to be posted).

P4 s the account name address parometer presence
indicator (0 mears cbsent; 1 means present).

F7 is the obort override indicator.

Word Options
Error Address is the return oddress fo process any
detected errors.

Area ond File Name Address is the oddress of o
three word data block that contains the area and
file nome of the file to be listed. The first word
contains the area nome in bits 16=31 in EBCDIC.,
The second and third words contain the file nome
in EBCDIC.

Priority is the 16=bit priority which is to be as~
signed to the printing operation. This priority is
used fo control the selection of files to be printed.
If not specified, priority defoults to the callers
priority.

Completion Code is the word where the system will
post the resulis of the service call.

account name oddress is the oddress of a two word
data block that contains the account name in
EBCDIC, extended to eight characters with trailing
blanks. If the account nome is all blanks or nu=
meric zero, it is treated as unspecified.

o. [f neither account name nor area nome is spec-
ified, the calling task's account is used, ond
the area may be any public area. This pro=
vides the simplest specification, and the user
need not be concemed with the possibility of
name conflicts other than within his own
account.

b. [f the account name is specified, but the area
nome is not, the file may be in any public
area. This provides for area-independent file
specification.

c. I the area nome is specified but the account
name Is not, the system acgpunt will be used.
This case provides compatibility for code
written before the oddition of file account
m'

Note: If o DCB oddress is supplied in lieu of the area and

file nome data block, the DCB will be closed upon
successful processing of the MEDIA service call.

MEDIA Processing 135

IREDIA KEY-WNS
The MEDIA key-in has two functions; it allows the operator
fo submit requests for a Medic conversion and it gives him
control over the operation of the Media task.
The MEDIA key=-in has the following general format:

MEDIA (input specification)[, (ihput option),—ﬁ

E—(irpuf option),...], (output :pecificaﬁon——l
E—[, {output option), (output option),. ..}

MEDIA (control specification[, (control —

L—tpeciﬁcaﬁon), |
where

Input specification may toke any of the following
forms:

IN, device
IN, oplabel
FILE, fid

Device may be a cord reoder (CRxxx) or o magnetic
tape (9Txxx or 7Txxx). Oplabe! must be associated
with one of these devices or a file.

Input option may be one of the following:

DEL SFILE, n UNLOAD
ALL REW

The DEL input option is applicable only to ¢ file input
specification and indicates the file is to be deleted
aofter the copy is successfully completed.

The ALL option is applicable to tepe and card input
specifications and indicates that all files from the
starting file to the end-of=file (volume) or two con-
secutive 1EODs ore fo be copied.

The other options ore opplicable only to mognetic tape
devices and specify processing as follows:

SFILE,n space forward from the starting (current)
position "n" files before starting the copy.

REW rewind the input tope after the copy
operation is completed.

UNLOAD rewind the input tape "off-line”™
ofter the copy operation is completed.

Output specifications may be of the form:

OUT, device
OUT, oplabel
FILE, fid

136 MEDIA Procesing

.

Device may be a tape (9Txxx or 7Txxx), @ printer
{LPxxx), or a card punch (CPxxx). Oplabe! must be
omociated with one of these devices or o file, Ifa
file is specified as input, then a keyboard printer may
be specified os on output device (TYxxx).

Output option may be one of the following:

NVFC SFILE,n REW)
SPACE,n WEOF, n UNLOAD
ADD

The NVFC and SPACE, n options are applicable to
printer destined files and have the following meanings:

NVFC the first byte of each record is not to
be interpreted as o VFC byte; instead, it is
to be printed as dota. The default is the
first byte is used as o VFC byte and the data
starts in the second byte.

SPACE,n this hos meaning only when NVFC
is specified and indicates there are to be
“n* blank lines between each output line,
1=ns<15.

The ADD option specifies that the output file(s) is
either to be an extension fo an existing disk file or to
follow the last file currently on o mognetic tape.

The remaining options are applicable to magnetic tape
ond specify processing as follows:

SFILE,n space forward from the starting (cur-
rent) position "n" files before starting the
copy .

WEOF,n write "n" end-of-files ofter the copy.

If WEOF is not specified, "n" is defaulted
h 2.

REW rewind the output tape after the copy.

UNLOAD rewind the output tape "off=line "
after the copy.

Options which do not have meaning for their associated

Input or output specifications are accepted and ignored
without an error notification.

The control specification moy be one of the following:

S
L
1 .
X ar
where
S couses an immediate suspension of the cur-
rent copy operation.

L will inhibit the initiation of any new copy
operations but will allow the current copy to
continue.

-

1 Mamhmtuwifsh"dvhm
*S", remove the previous "L" request, or
search for a new copy to stort.

X terminate the current copy.

Multiple control options moy be selected in ony order

fn one MEDIA key=-in. However, if on "S" and/or "L"

are selected in combination with an “I", processing is

os follows: The "S" and/or "L" oction requests are set

{combined with the current status of the MEDIA task);
then, if "S" is set, "I1" resets it only; if “S" is not set
and "L" is, "I" will reset "L".

CONVENTIONS

Input Files are delimited by o |EOD from a cord reader,
on end-of-file from a tape, or the end-of-file from a
disk. When multiple files are being copied in response
fo the ALL option, double IEODs or end-of-files are
required to terminate the input. Tapes being processed
in response fo ADD or ALL options must be terminated by
double end-of-files.

Whenever one of the devices involved in a MEDIA copy
requires operator intervention, o message indicating this
condition will be output on the control console and the
MEDIA task will enter the suspended operation state by
simulating an “5” control key=in. This messoge moy be:

1 IMEDIA: MOUNT TAPE(S) FOR dddd

to indicote the tope or tapes for conversion request “dddd"
are to be mounted; or

Iiyyndd MANUAL

o indicate that the device is in the monual stote; or

I lyyndd WRT PROT

to indicate the output device is write-protected.

The copy is confinued after the condition Is corrected by
enfering the MEDIA "1 contro! key=in or aborted if the
condition cannot be corrected by entering both the *X"
ond "I" contro! key-in. Note that if the "X and "1" are
not entered in one key=in, the "X" should be entered first
fo prevent a reoccurrence of the condition.

Multiple positioning options may be requested for mognetic
tapes that might cause conflicts. If both SFILE and ADD
ore specified for an output tape, the SFILE positioning is
performed first ond then the ADD positioning. Whenever
both REW ond UNLOAD are specified, only |ho UNLOAD
is performed.

e tr . §pecifying on SFILE,n count greater than the number of

files remaining on o tape will cause the output file(s) to
be oppended os if an ADD had been specified.

MESSAGES
The acceptance of a valid key=-in request and its entry into
the MEDIJA task's queue is indicated by the message,
1IQUEUED AS ID NUM dddd

A key~in request that is rejected for any reason is indicated
by the messoge,
JIKEY=ERR

and can be corrected by re-entering the correct key-in.

The messoge,
1IMEDIA: MOUNT TAPE(S) FOR dddd

Is typed when the MEDIA task has begun processing request
“dddd" ond will wait until the operator indicates he has
wmounted the correct tape(s) on the correct drives.

The messoge,
IIMEDI]A: ABORTED REQ dddd:yyyy[, xx]

is output whenever a copy request cannot be completed
normally and is cborted. The "dddd" gives the request's
ID number, "yyyy" gives the reason for the abort, and
the optional “xx" gives the error code returned in R10 by
the service call reporting the fatal error. The meaning of
the various "yyyy" codes may be one of the following:

B2 88 Moonim
BUFS unable to get memory for buffers.
DEV unrecoverable error during the copy. ¢

NOMO the MO operational label was not defined
by SYSGEN time.

OPER the operator keyed in the *X" control
command.

OPNI uncble to open the input file.'
OPNO unable to open the output file. !

PREP fatal error during SFIJ,E or ADD pre~-copy
positioning. b
SPEC an error in the request specification that was

not detected when request was occepted.

Hhese errors will have the optionol "xx" displayed.

Conventions/Messoges 137

10. OVERLAY LOADER "

OVERVIEW

The Overlay Looder is o two-poss processor that creates
programs in overlay form. Modules in standord object
longuoge formot aore converted to overlays in cbsolute
core imoge form in accordonce with the Looder control
commonds. The Loader crectes progroms for execution in
either foreground or background, prepares stondord proces-
sors for execution under the Job Contro! Processor, ond
creates Public Libraries,

The Overlay Looder permits the user to assemble, lood to
bockground or foreground and execute progroms with mini~
mal control information. The default cases documented in
this section for each control command will handle most nor-
mal situations.

The control command structure permits the user fo toilor the
looding procedure for o wide variety of situations, ond the
contro! commonds add control and flexibility by overriding
defoult cases and adding options.

The size of the program that con be looded is o function of
the size of the symbol toble ond ovoiloble core storage ot
load time, rather thon the omount of core memory that the
progrom occupies at execution time. Therefore, the Over-
loy Loader moy load user programs equal in size fo the max-
imum ovailoble area in core ot execution time, even though
this area is not available ot load time.

The loading of mixed medio is allowed, ond all library
looding will be from librory files on disk. There are no
constroints on the ordering of modules within o library.

FUNCTIONAL FLOW

The options specified on the IOLOAD control commond are
scanned ond those not specified are assigned their default
values. A :ROOT or :SEG control commond is sconned to
determine the source of the binory object modulesfrom which
the segment will be crected, ond fo define its linkage.

The Looder makes the first poss over the binory object mod-
ules, allocating the segment's lobelled COMMON blocks
{dummy sections) ond control sections, It concurrently builds
© symbol toble of DEFs ond unsatisfied REFs. Object mod-~
ules input from non-disk devices ore saved on o temporary
disk file (X1).

After the lost object module for o segment hos been input,
the librories ore searched. Pointers to the selected library
object modules are saved ond their DEFs ond REFs are odded
fo the symbol toble. At the end of o poth, segment symbo!
tables ore written on temporary disk files. At this point
oll the Looder control commands except :ASSIGN ond
:LMHDR have been input.

138 Overlay Looder

During the second pass, each segment's binary object
modules ond selected librory modules are looded. The
ebsolute core imoge of each segment s creoted and written
on the program file. Part two of the ROOT (the DCBTAB,
OVLOAD table, the temp stocks ond ony DCBs created by
the Looder) is built ot the end of the second poss. If @ MAP
has been specified, it is output. I on output file used by
the Looder overflows, on attempt Is mode to output all pos-
sible MAP information. The Loader retums to the system
by calling either the EXIT or ABORT function.

LIMITATIONS

There ore certain limitotions in the use of the Overlay
Looder due to the fotal system considerations or because the
efficiency of the Looder could otherwise be degroded.

1. No discontinuous segments will be output by the Over-
loy Loader. The SEGLOAD ond ACTIVATE service
functions read only contiguous core images. Since
each discontinuity would result in ot least one oddi-
tional disk access, considerable degrodation of the run-
load process for the foreground would result.

2. The contents of reserve areas within a program will not
be predictable ot execution time unless initialized in
some monner (e.g., by DATA statements), Lobeled
COMMON will be unpredictable unless initialized by
a DATA statement. Blank COMMON is not written to
disk ond is not looded as part of the program.

3. Allocation of program oand lobeled COMMON within o
progrom orea is generally determined by the Loader.

4, Only relocotable modules or those containing absolute
origins folling within the limits of the segment currently
being loaded will be ollowed.

o

No implicit looding of segments will take place ot exe-
cution time. Only explicit colls for Memory Moncge-
ment services will reod in overlay segments. Thus,
the overlay structure must be accurately defined ot load
time to coincide with explicit colls in the user's pro-
grom. The user may, however, specify a set of seg-
ments to be looded initially.

-
-

OVERLAY LOAD MODULES

An overloy lood module is o file containing the absolute

core imoges of the segments of o progrom, olong with o
body of informotion fo control the preparation of the pro-
grom for execution. The absolute core image of o segment

in the lood module is @ single continuous byte string,
beginning ot o ssctor boundory. Its length Is such thot it
includes all arsas of the segment gensrcated from ROMs and
all locations altered by :MODIFY commonds. It will stop
short of any oreas at the end of o segment thot result from o
:RES commond if these oreas do not have specific initiol
contents (i, e, , if there are no :MODIFY commends offect-
ing them),

'OVERLAY STRUCTURES

An overloy progrom is generally composed of two root seg-
ments, o Blonk COMMON segment ond several overlay
segments; however, it con consist of as little as a single
root with no other segments. The root ond common segments
are always resident during execution of the progrom,
Residence of overlay segments depends on the explicit use
of Memory Manogement calls by the progrom,

Each segment is created from one or more binary object
modules ond associated librory routines. The segments are
ossigned arbitrary identificotion numbers (except for the
root, which is alwoys segment 0) that must be unique within
the overlay progrom. Segment numbers are used by the
Overlay Looder ond the Memory Monagement fuctions.

The overlay structure of the program is communicated to
the Looder with the :ROOT, :SEG, and :COMMON con-
trol commonds. This structure defines all sets of segments
that logically may be in memory together, Any such set

of segments will be called o "path" of the progrom. The
overlay structure of a progrom is commonly represented by
o tree diogrom, where the root (both segments) is the origin
bronch ond each overloy segment is o bronch. The diogram
is drown so thot the paths of the progrom are the same os
the sets of segments defined by the paoths through the
diogrom.

The overlay progrom example given in Figure 13 consists of
o root (segment 0) ond overlay segments 1 through 15. The
segments (horizontal lines) are numbered in the order in

which they were built by the Loader. There are nine paths:

1. 0,1,2 6. 0,5,9,10,11,12
2. 0,1,3 7. 0,5,9,10,11,13
3. 0,4 8. 0,59,10,14
4. 0,56,7 9. 0,549,615

5

. 0,5,6,8

Nommally, the allocotion of memory to the segments of the
progrom would correspond to the structure diogrom above.
Each segment would begin in memory ot the end of the seg-
ment at which it is based in the diogrom. This ollocetion is
provided by the Overloy Looder when segment origins are
not specified explicitly.

—
‘ 1
3
4
-0 |
7
6
Le
5 12
u
10 [13
L4
9
15

Figure 13. An Overlay Progrom

OVERLAY RESTRICTIONS

Communication between segments by extemal DEF/REF link-
oges is permitted with the following restrictions:

1. The Looder will satisfy o DEF/REF linkoge only within
a path.

2, A segment in one path connot reference o segment in
onother path. For exomple, segment 2 must not refer-
ence ony of segments 3-15.

3. The user must ensure that ony segments that infercom-
municate ore in core. For example, if segment 5 ref-
erences segments 6 ond 8, then segments 6 and 8 must
haove been explicitly looded. Iif segment 8 references
segments 5 or 6, these segments must hove been explic-
itly looded since the looding of segment 8 does not
couse the implicit loading of segments 5 ond 6.

4. Mdentical definitions connot be used in segments that
ore in the some path. For exomple, segments 5 ond 13
connot have identical definitions I.'Qcom they ore both
in path (0,5,9, 10, 11, 13).

5. Identical definitions and references moy be used in seg-
ments of different paths thot do not involve o common
segment. For exomple, If segments 7 and 15 reference
identical definitions in segments 6 ond 9, the Looder
will link the reference in 7 with the definition in 6 ond
the reference in 15 with the definition in 9.

Overlay Structures/Overlay Restrictions 139

6. Mentical references in segments of different paths may
be mode fo a definition in o segment common fo both
paths. For exomple, segments 6 ond 9 can eoch refer-
ence o definition in segment 5 becouse 5 is o common
segment in the two paths (0, 5,6, 7) ond (0, 5, 9, 10, 14).

7. A segment thot is common fo two paths connot reference
identical definitions in the different paths. For exom-
ple, segment 10 connot reference identical definitions
in segment 12 ond 13, even though segments 12 ond 13
are in different paths.

Where possible, the Loader will warn the user obout errors
in overloy structure ond segment communication; however,
it is the user's responsibility to attempt o reasonable, work-
oble overlay construction.

OVERLAY CONTROL COMMANDS

The prime Overlay Looder commond, 1OLOAD, is read by
the Job Control Processor (JCP) ond causes the Overloy
Looder processor to be reod info the bockground ond exe-
cuted. All Looder subcommands ore identified by a leading
colon (e.g., :SEG). They are reod from M:C ond logged
onto M:LL. Blonk cards are passed over without comment.
When o CP-R control commoand is encountered, the Looder
completes the lood process ond exits to the JCP.

Note that IEOD must occur only os o terminator for object
module input; its use is illegol for terminating the Loader
control commond stack.

SYNTAX

The syntox for Overloy Loader control commands is identi-
cal to that defined for job-control commonds (except for
MODIFY).

ORDER OF CONTROL COMMANDS

The control command stack is divided into major divisions
or substacks, which must occur in the following order:

10LOAD
:ROOT
SEG or :COMMON
. or { :PUBLIB
oL sSEG
:SEG or :COMMON
:ASSIGN or :LMHDR

The :LIB, :INCLUDE, :RES, ond :MODIFY commands may
occur in ony :ROOT or :SEG substock. :EXCLUDE and
:LCOMMON moay occur in o :ROOT substack, or in a :SEG
substack unless it foliows :PUBLIB. The :ASSIGN ond

40 Overlay Control Commands

sLMHDR commonds must follow all other commonds, A
:COMMON commond may occur (only once in the commond
stock) wherever o :SEG substack is legal, except following
o :PUBLIB substack. Only a single :SEG substock may
follow a :PUBLIB substack.

A ROOT or SEG substock has the following order:
:ROOT or :SEG

:INCLUDE.

.IE_;(BC LUDE These commands may occur

:LCOMMON' In any order.

:RES

Binary Object Modulel Binary object modules ore in-
cluded ot this point in the
substack only if the input

: device specified on the

: preceding :ROOT or :SEG
command is the some os the

Binory Object Modu’en “C" device.

L,
{MODIFY
:MODIFY

The PUBLIB substack hos the following order:

:PUBLIB

:INCLUDE T is occur
:EXCLUDE may

.LIB in ony order.

Binary Object Mm'h.vlel Binary object modules ore
included in the substack

. only if the Input device
< specified on the PUBLIB
. command is the some os
Binory Object Modulen the “C" device.
:MODIFY
stMODIFY
10LOAD The JOLOAD contro! command signifies that

the Overloy Loader Processor is fo be executed in the bock-
ground arec. Any error on the |OLOAD contro! commond
causes the Looder fo abort. Recovery consists of correcting
the error and reloading the entire job.

If on |OLOAD control commond is continved f%onother
cord, the continuation commond must hove a colon (:) in
column one insteod of on exclamction () character,

,'I'hese commands are not permitted in o :SEG substock if it
follows o :PUBLIB substock.

The form of the command is B e -

(IOLOAD :(opﬁm‘)(.oPﬁmz)...(,opﬁmn)j —

where the options are
GO specifies that the Loader is fo Input all object

modules from the GO file ond form a root. The
only other control commands recognized in this
mode are :RES, :INCLUDE, :MODIFY, and
:ASSIGN. All other commands are considered
illegal. This is considered the default input op-
- tion unless the first command following the
OLOAD command is either :ROOT or :PUBLIB,
which provide their own input specifications.

GO,LINKS specifies that the Looder is to form o

link type overlay structure from GO In the follow-
ing monner: module 1 is identified os the root
(segment 0); module 2 is identified as segment 1
ond is linked to the root, ... ; module n is iden-
tified as segment n-1 ond is linked to the root.

Module 2 (ident 1)

Module 3 (ident 2)

Module | (root)

Module n (ident n-1)

Libraries are searched at the end of sach segment.
Only :MODIFY and :ASSIGN commands are hon-
ored. The user must make explicit ealls to lood
segments 1, 2, ...n. No implicit calls are built
by the Loader.

PUBLIB,name [,nome2,name3name] specifies that

the named Public Libraries ore to be resident when
the looded program executes, and that the Looder
is fo establish the appropriate linkoge. Nome;
is the file nome of o Public Librory in the Fore-
ground Programs areo of the disk. The PUBLIB
keyword may not be used when o Public Librory

is being created. (i.e., one Public Library con-
not reference onother Public Library.) The class
of the task(s) constituted by the progrom to be
looded must match thot of the librories referenced
(i.e., primory or secondory).

LIB[,USER,SYSTEM] specify the Librories to be

seorched following eoch segment, The order of
the keywords USER,SYSTEM defines the order of
the seorch. If the USER or SYSTEM keywords are
omitted, ond only the LIB keyword is specified,
the Librory search is suppressed. K the LIB option
is omitted, the Looder searches the System Librory
after each segment.

Note: The :LIB confrol command overrides this
option for the segment in which it oppears
(see below).

:i’g(][[,m],m,m] spocifies m the

progrom being looded
Is to execute in foreground or background. If
the option is omitted, the progrom will execute
in the bockground, The “fwo" and “lwa" po-
rameters ore hexadecimal values denoting the first
word oddress {on o doubleword boundory) and last
word oddress of the areo within which the program
will execute, If REL oppeors, "fwo" ond "iwa"
denote word displocements of the program fimits
from the defoult first word oddress described
below.

For primory programs, the default fwo ond Iwa
volues are the FWA ond LWA of the first Fore-
ground Private partition (defined at SYSGEN).

For secondary programs, the default limits are the
limits of tosk virtual memory. Note thot “Iwo" is
on indicator of upper limit. ‘i the program exceeds
this limit, the user is womed but looding is not
inhibited (except when o Public Librory is being
created). N the program loods in less space, the
shorter area will be output in the header,

TASKS, volue hos no effect but is occepted so as fo

retain compatibility with RBM-system loader com-
mand decks.

TEMP[,vcluel[,voluez]] specifies the decimal num-

ber of words to be allocated for the user temp
stock (vuluel) ond the CP-R temp stack (volue)).
These stacks will be locoted in port two of the
root. The user temp stack size defoults to 200.
The CP=R temp stack size defoults to 200 (225 if
the symbionts are assembled into the system). (Pub~
lic Libraries do not have temp stacks. Therefore,
this option moy not be specified when a Public
Library is being created.) The “value” parameter
is a decimal number.

FILE, fid specifies the CP=R file identifier of the

output file to which the loaded program is to be
written (hereafter referred to as the Program File).
The default assignment of the program file is OV
in the Background Temp area. If the Background
Temp area (BT) is specified, the file name must be
OV. When a Public Library is being created, the
Foreground Programs area (FP) must be specified.

MAP [, [:':-?GRAM} [, {ALPHA specifies that

ADDRESS © map of the

progrom is o be output to M:LO. If no keyword
follows MAP, a short map consisting of informo-
tion about progrom allocation and overlays is
output. K the PROGRAM keyword is given, exter-
nal definitions and control section designations for
sach segment are listed without library definitions.
For the ALL keyword, both program and library

Overlay Control Commands 141

.ot

definifions ore listed. In defoult, no MAP is
output. (Diognostics and unsatisfied references
ore still listed on M:LL.)

I o PROGRAM or ALL mop is specified, the user
may further use the keyword ALPHA or ADDRESS

o request that symbol tebles be sorted alphobeti-
colly or numerically. If neither sort is requested,
symbols ore listed in the order of encounter.

BOUND, value sets the looding (ond execution) ori-
gin for eoch object module to the next higher mul~
tiple of the bound value {e.g., if BOUND = 100,
then on origin would chonge from 3EF to 400). The
“value" parometer must be o hexodecimo! number
fess thon or equol to 1000 ond a power of 2. Sug-
gested volues ore 10, 100, or 1000. The BOUND
does not apply to Librory modules. If BOUND is
not specified, the Looder begins each module on
o doubleword boundary.

UDCB, volue specifies the number of unnomed DCBs
to be allocated by the Looder. (See “Looder-
Generoted Items" for detoils.) The "volue” po-
rometer is o decimol number,

STEP' specifies o "WAIT" ofter loading each module
from paper tape. Used in CP-R ATTEND mode,

{'S’:lC[fAOAt:;lRY]} specifies task type, ond offects
segment definitions. Segment

origins ore forced to page boundaries for secondary-
task segments, but not for primary~task segments.
If not specified, SECONDARY is ossumed. For
bockground progroms, only SECONDARY is volid.
Either option moy be specified for Public Librory
creation.

SMM specifies the Simplified Memory Management
option. This option provides for compoatibility of
progroms designed for the memory orgonization of
background in Xerox RBM (unmopped) systems,
ond is described in detoil in the chopter on CP-R
Memory Management. (Note that certain of the
standard CP-R processors, currently including the
service processors, must be loaded with SMM if
they are loaded by the Overlay Loader.)

Exomple: Form Root From GO File Modules

1OLOAD GO, (TEMP,300), (MAP,PROG), (UDCB,3)

tROOY The ROOT control command is weed to qnc.f
the object modules from which the root ssgment is to
be created. The ROOT commond must mde all SEG
‘commands.

The form of the commond is

:ROOT [(ENTRY ,def), (Exn.oc[,m],hexoddr)—]

This exomple specifies thot the Loader is to form the root
from object modules locoted on the GO file, allocate
300 words for the user Temp Stack, output o PROGRAM
map, ond allocate three unnomed DCBs.

42 Overlay Control Commands

L input input
('option) (ophon

where

ENTRY,def specifies the location ot which exe-
cution will commence ofter the root is looded
ot execution time. The def parameter must be on
externcl definition (1-8 EBCDIC chorocters), not
necessorily in the root segment. This entry point
overrides all subsequent gntry oddresses encountered
in looding. The default entry oddress is the lost
tronsfer oddress encountered in the object modules
of the root.

EXLOC[,REL] hexaddr specifies (subject to bound-
ing) the origin of root part two. The value hexaddr
is o hexodecimal volve. If REL oppeors, hexoddr
is treated os ¢ word oddress relotive to the de-
fault FWA for the program (see option FORE for
the OLOAD commond). If REL does not oppeor,
hexoddr is on obsolute word address. If the EXLOC
option is not used, the defoult oddress for root
part two will be the first bounded oddress past the
fost oddress used by any other segment.

Input options are of the form

DEVICE, type[,PACK]
FILE, fid

OPLB, labe!

NONE

[,volue]

where

DEVICE,type specifies the input device in the for=
mot yyndd.

where

yy is a device type code.

n is the IOP to which the 1vice is
connected.

dd is the hordware device number of the
device (e.g., CRAO3,9TABI).

PACK specifies thot the input is from 7-trock mog-
netic fape with packed binary format.

_—

FILE,fid specifies the CP-R file identifier for an
input file. If the Bockground Temp area (BT)
is specified, the file nome must be GO. Note
that o file moy be used as input fo more thon one
segment (in different paths). A named file is re-
wound eoch time it is specified; the GO file
is not,

OPLB,lcbel specifies the operationol label from
which the object module(s) will be input. The
“lobel” porameter must be o 2~-character stondard
system operctionol label.

value either o decimal number (1 € volue £ 8191)
that specifies the number of object modules to in-
put from the specified device/file; or the text
string, EOD, which meons to input from the speci-
fied device/file until on 1EOD is encountered. If
volue is omitted, one object module will be input
from the specified device/file.

NONE indicates that no ROMS are explicitly re-
quested. The segment will be composed of any
areas allocated in response to :RES or :LCOMMON
commands, and any library ROMs necessary to
satisfy references in :INCLUDE command and the
ENTRY option. Iif only :RES areas are included,
a "defined” segment is produced.

If there are no input options on the ROOT control command,
one object module will be input from the GO file. Note
thot the order of the subfields determines the order in
which the object modules are loaded.

Example: Form Root From Input File

:ROOT (FILE,D1,BETA, 3), (ENTRY,START)

This exaomple specifies thot the root is to be formed from the
three object modules in a file called BETA located in the
D1 disk area. After loading, execution is to commence ot
the location defined by the external definition START.

Exomple: Form Root From Librory Modules

:ROOT NONE, (ENTRY,LIBROOT)

This exomple specifies thot the root is to be formed from
only the librory modules necessory to satisfy the reference
LBROOT in the ENTRY option.

BEGC The SEG control commond is used fo define o
segment's overlay linkoge ond fo specify the object mod-
ules from which the segment is to be creoted. :

<ol T i

Ay

The form of the commond is

1SEG (LINK,ident,[,ONTO, ident, N—
L_[, (opﬁon‘), “eee (opﬁonn)]

where .

LINK,identy specifies the identificotion number of
the segment being looded. The ident; must be
specified and must be the some number used within
the overlay progrom to reference the segment at
execution time vio memory-monogement services.

The “ident|" porometer must be o decimal number
between 1 ond 32,767.

ONTO,identy specifies the identification number
of the segment (which must have been previously
looded when this control command is interpreted)
to which this segment is linked os on overlay. If
ident) is obsent, ident, is linked onto the root.
The "identy" porameter must be a decimal number
between 0 ond 32,767 (0 denotes the root),

option; is either on input option (as described for the
:ROOT command) or one of the following options.

EXLOC[,REL] ,oddress specifies on optional execu-
tion oddress for looding of this segment, The
“oddress" porometer is o hexodecimol volve. If
REL appears, the "oddress” volue is interpreted as
@ word displacement relative to the defoult lower
limit for the progrom (see OLOAD commoand option
FORE/BACK). If REL is omitted, the value is
freated as on absolute word oddress. The absolute
oddress obtained in either cose will be bounded by
either the specified or defoult BOUND. If the
EXLOC option is omitted, the segment will be
locoted at the first bounded oddress following the
segment thot this segment is linked to.

ENTRY,def specifies on entry point for the segment,
The “def" porameter must be on extemnal definition
of the progrom; not necessarily in the segment
itself. The volue of the “def" overrides any trans-
fer addresses encountered in loading of the seg-
ment, The defoult entry address is the lost tronsfer
address encountered in loading nonlibrary ROMs.

oMy e
N A, -

PR ?g\c'uxw 3
SHARE, {ngEMl[' PRELOAD] specifies the group
of tasks that con
share the segment being linked: either all tasks in
the system (SYSTEM) or only the other tasks in the
some job (JOB). I omitted, gp segment sharing
will be allowed, -

The presence of the PRELOAD option couses the Overloy
Loadsr to omit the load module image of the segment ond
set a flog which indicates that the segment must hove been
previously defined when the lood module is initiated. This
con sove considerable file space when a large segment is
shared by several lood "'°§’g§i ol A
A cued spliatmaees T

) ij. vy, wed: aed = O

Lo 8 { ' Owerlay Control Commands 143

LS
© et)
' N LAt ‘\J

. =" ILOAD

N
AX

PR

Forprimory tasks, CP~R memory management does not record
ssgment activity, so the SHARE option acts somewhat dif-
ferently, Primary task shared segments are not considered
in determining the program bounds, so primory progroms
may share o data area by specifying a shared segment at the
some oddress. (However, no program may be loaded with
ony segment preceding Root part 1.) For primary fasks,
there is no distinction between SYSTEM ond JOB shareo-
bility. PRELOAD couses omission of the load module image
of the segment but the user, not the system, must insure thot
the segment is actually loaded.

NO
ACCESS, :X specifies the memory~-access control
ALL to be assigned to the segment. If

omitted, ALL is assumed. For
primary~task (unmapped) segments, this option is
accepted but will have no execution=time effect.
The meaning of the sub-options are

NO = No acces permitted.

R = Reod only.

RX = Reod and execute only.
ALL -~ Reod, write and execute.

FIX specifies that the segment must be assigned
" real memory such that its virtual ond real addresses
correspond 1:1. If omitted, real memory is as-
signed wherever it is available. Asegment defined
with the FIX option must reside in a Foreground-~
Preferred partition of real memory.
& specifies thot the segment is to be acti-
& vated with the root segment when the task is ini-
tioted. (After initial loading, the segment is
subject to the normal memory-residence controls
allowed by its other choracteristics.) If omitted,
the segment must be explicitly octivated. This
option is invalid for primary-task segments,

The input options are the some as for the ROOT control
commands. If there are no input options on the SEG con-
trol command, o single object module from the GO file
will be input.

The ROOT and SEG control commands must be input in an
order determined by the overlay structure of the program.

The segments in the exomple given in Figure 13 have been

numbered to illustrate this order. Basically, segments are
input one path at a time, with the restriction that segments
common to more than one path ore input only once,

Example 1.
The following contro! commands define the overlay struc-
ture of Figure 14. This example specifies thot one object
module for each segment will be input frem the GO file.
ROOT
:SEG (LINK, 1, ONTO,0)

‘44 Overlay Control Commands

2
)
3
4
7
6
8
5 12
L
10 13
(LN
9
15

Figure 14. Overlay Example

:SEG (LINK, 2, ONTO, 1)
:SEG (LINK, 3, ONTO, 1)
:SEG (LINK, 4, ONTO, 0)
:SEG (LINK, 5, ONTO, 0)
:SEG (LINK, 6, ONTO, 5)
:SEG (LINK,7, ONTO, 6)
:SEG (LINK, 8, ONTO, 6)
:SEG (LINK, 9, ONTO, 5)
:SEG (LINK, 10, ONTO, 9)
:SEG (LINK, 11, ONTO, 10)
:SEG (LINK, 12, ONTO, 11)
:SEG (LINK, 13, ONTO, 11)
:SEG (LINK, 14, ONTO, 10)
:SEG (LINK, 15, ONTO, 9)

Exomple 2,

The following control commands define the overloy structure
illustrated in Figure 15. This example specifies%ot one ob-
ject module for sach segment will be input from the GO file.

:ROOT

$SEG (LINK, 10, ONTO, 0)
SEG (LINK, 5, ONTO, 10)
$SEG (LINK, 25, ONTO, 10)
SEG (LINK, 103, ONTO, 0)

10

103

Exomple:

Figure 15, Object Module from GO File

BINARY OBJECT MODULES

The Locder inputs binory object modules from mixed media
according to the input files ond devices specified on the

ROQOT, SEG ond PUBLIB commands. Files moy be blocked
or unblocked. Non-=disk input is written to o temporory
disk file for Pass 2. Binory modules ore reod sequentially
from each disk file. Each disk file, with the exception of

GO, is rewound ecch time thot it is named as input on @
control command. Therefore, multiple inputs from o file

(other thon GO) result in the file being rereod from the
beginning.

In this example,

:SEG (LINK,204,ONTO,0),(FILE ,FP,PROG1,2);
:(FILE,BT,GO,4)

:SEG (LINK,205,0NTO,0), (FILE,FP,PROG1,5);
:(FILE BT,GO,2)

the first access to the PROG]! file (in SEG 204) would

result in the first two modules being looded from the file.
The second access (in SEG 205) would result in the first
five moduies of the file being looded (not modules 3-7).

The GO file is read contiguously throughout a pass, no

matter how many accesses ore made. In segment 204, the

first four object modules from GO would be loaded. In
segment 205, the next two modules (5 ond 6) from GO
would be loaded.

iLig The LIB control command specifies the librory

search for one segment only (i.e., the segment identified
by the preceding ROOT or SEG command). It overrides

the librory search specified by the LIB option on the
OLOAD control command.

The form of the command is

:L1B [(USER, SYSTEM)]

where option keywords USER and SYSTEM ore used to denote
the librories and order of search; e.g., :LIB (USER) would
couse only the USER library to be searched for that segment.

If neither USER nor SYSTEM is specified, library search

(except for Public Library) is suppressed for that segment.

»

In Figure 16, assume on overlay progrom with four ROMs
the GO file; with segments 0, 1, and 2 coded in ossemb!
longuoge, ond segment 3 coded in FORTRAN.

Seg |
ROM 2

Seg 0 Seg 2
ROM 1 ROM 3

Seg 3
~ROM 4

Figure 16, :LIB Command Usoge

To speed up the lood process, the :LIB command in the
stock of commonds given below would be used to specify
o search of the System Library in segment 3, ond the
no-library search option would be specified on the 10LO.
command.

IOLOAD (MAP,ALL),LIB
:ROOT

:SEG (LINK, 1)

:SEG (LINK,2)

:SEG (LINK,3)

:LIB SYSTEM

SNCLUDE The INCLUDE control commond aliows rou:
tines to be looded from libraries when no reference to the
routine has been mode in ony module of the segment.

The form of the commond is

FNCLUDE (def, [,def - ,defn])

4 -
where def; is the EBCDIC symbo! of o definition contained
in the librory routine fo be looded. The symbol may be
one fo eight EBCDIC chorocters. The def; must be ovail-
able in o librory specified in o preceding :LIB command or
the LIB option on the |OLOAD commond; any unfound def

results in on error diognostic. INCLUDE also concels o
prior EXCLUDE for o given symbol.

Overlay Control Commands 4.

"

Example: Llood Two Routines From Librory
rmcwos (9SETUP,7SET)

In this exomple, the routines 9SETUP and 7SET are to be
included in the lood from a library previously specified in
the search criferia.

SEXCLUDE The EXCLUDE control command inhibits li-
brory search and linkage for the nomed definition(s) even
though on external reference occurs in @ module of the

segment.

The form of the command is

:EXCLUDE (def, [,def e ,defn])

where def; is the EBCDIC symbo! of an external reference
contained in o module of the segment. However, def; must
not occur as on external definition in o lower level seg-
ment of the poth. The symbo! may be one to eight EBCDIC
chorocters. Note thot EXCLUDE also inhibits linkage with
the specified Public Library for the given symbols.

Exomple: Exclude Search for Named Routine

In this example, the free structure illustrated in Figure 17
shows o routine colled SIN in segment 1 thot has the some
nome as o library routine, ond is referenced in on eorlier
segment (Seg 0). The command

-(Excwof (SIN)

inhibits librory search and linkage for the nomed routine
only so that the TAN routine would be included in the root
but the SIN routine would not.

Seg !
DEF SIN
Seg O
DEF A
REF TAN,SIN
Seg 2
REF TAN

Figure 17, :EXCLUDE Command Usoge

1446 Overlay Control Commands

SCOMMON The COMMON contro! command specifies
that the Looder is to set the base of Blank COMMON ot
the end of the segment identified by the preceding ROOT

or SEG control command, or ot @ location indicoted in the —-.

COMMON control commond. It also allows specif cotir
of the size of blank COMMON. I this control comman
is not included, Blank COMMON is set of the end of the
longest path. Only one COMMON control command moy
be used in a control command stock.

The form of the commond is

:COMMON [(opﬁonl) ,(Opfionn)]

where option, is one of the following:

EXLOC, hexloc specifies the base of Blank COMMON
1o be the oddress "hexloc"”, which is ahexodecimal
number. If the option is omitted, the base of
Blank COMMON will be set ot the end of the
segment (or root) defined by the previous SEG
(or ROOT) commond.

SIZE ,hexwords specifies the word size of Blonk
COMMON to be "hexwords”, which is a hexo-
decimal number. This size will override any
size declared in a later ROM, and any smaller
size in an earlier ROM, but will be ignored i
a larger Blank COMMON size has already been
declared. If the option is omitted, Blank COM-
MON size is set to the largest size declared
in a previously loaded ROM. Whether the size
is set by the option or by an sarlier declaro-
tion, if a later declaration requires a lorger
size, a womning Is issuved and the larger size
is not ollocated.

SYSTEM} specifies the range of sharea-

J0OB bility of the Biank COMMON
segment, as described for the :SEG command,
for both primary and secondary lood modules.
PRELOAD is not allowed however, since Blank
COMMON is never included in a load module
image.

SHARE,

FIX specifies 1:1 virtual-to=real address correspon-
dance for the segment, as described fpr the SEG
command.

SRES The RES control command allows the user to re-
serve and nome one or more arecs of the end of the segment
for lood-time or run-time debug purposes (see "MODIFY"
contro! command for further comment). The oreas are de-
fined os DSECTs ond moy be referenced by ROMs.

~r’

s

The form of the commoand is
RES (def size), [,(d.f..:z.)z, e ,(d-f,sizc);‘]

where

def crectes an external definition whose value is
the FWA of the reserve area. The definition must
be unique within the path.

_size is o decimal volue specifying the number of
words in the reserve area.

Exomple: Reserve Two Areas at Segment End for Debug
Purposes

:RES (PATCH1,5),(PATCHZ,10)

In this example, two areocs are being reserved at the end
of a given segment; the first (PATCH1) comprising an
orea of five words and the second (PATCH2) on area of
ten words.

SLCOMMON The LCOMMON control command ollows
the user to determine the allocation of Labeled COMMON
blocks (DSECTs) within the root ond overlay segments of the
progrom, (See "FORTRAN Interfoce-Lobeled COMMON"
for adiscussion of restrictions concemning Lobeled COMMON
allocation ond initialization,)

The form of the commond is

:LCOMMON (dsecfo)[,(dsect‘), vee ,(dsectn)]

where

dsect. is either blockname, size or blocknome, DEFER,

blockname is the one- to sight=character EBCDIC
name of the Lobeled COMMON block or DSECT,

size Is o decimo! volue specifying the lorgest word
. #ize needed for the ollocated block. If ‘size’ is
omitted, zero is used.

DEFER specifies that the Labeled COMMON block
will not be ollocated until it is mentioned again
in either on :LCOMMON command without DEFER
or o :RES commond. The size ollocated will be
the largest specified in either thot command or
ony declarations encountered in ROMs by thot
time. K o Labeled COMMON block is deferred,

it is the user's responsibility fo insure thot the
following rules are observed:
e The block may be deferred only once
before it is declored in o ROM being
loaded.

e The block must be allocated by one of
the methods described, or an unsatisfied-
reference error will result.

@ If the block is deferred in o segment
common to several paths which declore
it in ROM:s, it must be oliocoted in o
segment which is common to those paths.
Otherwise, it will remoin unallocated in
some poths, ond will result in unsotisfied-
reference errors in those paths.

'

o K the content of the block is initialized
by ossembled code, that code must be in
the segment where the block is cllocoted.

Exomples: Specify Allocation of a Labeled COMMON
Block

In the overloy structure given in Figure 18, seg O references
a Lobeled COMMON block A of 50 words; seg 1 references

a Labeled COMMON block A of 100 words; seg 2 references
o Lobeled COMMON block A of 60 words.

Seg 1
References a Labeled
COMMON block A
of 100 words

Seg 0

References o

Labeled COMMON

block A of 50 words
Seg 2
References a Lobeled
COMMON block A
of 60 wordft.

Figure 18. DSECT Allocation Exomple

Normally, the Loader would allocate block A with the size
first encountered (50 words), and would output o diognostic
alarm when the second block of 100 words in seg 1 is
encountered.

Overlay Control Commands 147

tHowever, the :LCOMMON command imserted in the deck word; specifies the word to be inserted (rigl\f-.'

structure |usﬂﬂod) ot the ith location. The v:ord “con be
expressed os: \
IOLOAD {MAP,ALL) .
1. Asigned (plus sign (+) optional) hexodecimel
:ROOT (DEV,CRAD3) or decimal volue that connot be enclosed in
. parentheses. Hexodecimal ‘ralues ore pre-
:LCOM (A, 100) ceded by o period.

SEG (LINK,1),(DEV,CRAD3) Exomples

:SEG (LINK,2),(DEV,CRAD3) -6, 100, .2A, - AF

would set the size of block A to 100 words. \ .
2, An externo! name plus or minus on optional

offset thot connot be enclosed in porentheses.
The offset con be either o hexodecimal or

. gc decima! value. Address resolution for the ex-
sMODIFY The MODIFY control command modifies core - Y X
locations of relocatable progroms ot load time. Core lo- : "‘:"‘:' ¢°."‘ be Mleiedf:zrusmg the SYMBOL
cations in either root or overlay segments con be modified. notation: rr{nome) * o
Since the reserved area ot the end of o segment {cllocated
with the RES commond) is output fo disk as part of the
segment, that area con be used for "patches" that will be
reod in with the segment at execution time. The MODIFY
commands must be input ot the gnd of the ROOT, SEG, or

where

rr=BA, HA, WA, or DA

PUBLIB substack for the segment being modified. If the GO :::d;:(szlfl:(o:) ,: (3”:: ;:ed lb)BIA‘:eAff:IE:A +N3<;ties
option is specified, the MODIFY commonds must follow any not. I the nome speci f'g:i ’hos not been de-
RES or INCLUDE commonds ond precede any :ASSIGN : specihy ° "

e s . lored on external somewhere in the overloy
commonds. I the (GO, LINKS) option is specified, the ¢ , es R
MODIFY commands must be ordered by segment number :fg:':ngfg; Po,h';‘e'm:,l be listed os on unsat-
ond follow the OLOAD command. ! on :

Nomolly, the image of a segment in o load module does Exomples:
not include :RES areas, since these oreas need not be ini-
tialized. If o :MODIFY command offects such on arec TABL +.F, TABL-1, TABL, HA(TABL)

however, the load module imoge of the segment is extended

to include the lost modified word. 3. A symbolic instruction that must be enclosed

by porentheses. The mnemonic field of thein-
struction must be on EBCDIC operation code
. that immediately follows the left porenthe~
:MODIFY[(SEG,ndenf),](LOC,oddre:s),wordl[,. : .,wordn] sis. (The flooting-arithmetic, flocting=shift,
decimal, ond byte string instructions hove not
been implemented.) The register ond index
fields con only be signed hexodecimol or
where decimo! volues. The oddress field con be
either o signed hexodecimal value, o signed
decimal value, or on extemol nome plus or
minus on optional offset.

The form of the commond is

SEG,ident specifies the identificotion number of
the segment to be modified. This option is only
necessary when the (GO,LINKS) option hes been
specified. If this option is omitted, the segment Jes:
identified by the preceding ROOT, SEG, or Exompes:
PUBLIB commond will be modified.

AMODIFY (LOC,MAP + . FO),(B PATCH + &,

-

LOC,address specifies the relctive location of the
first 32-bit word fo be modified. The oddress must

be expressed as on extemol definition nome plus / {MODIFY (LOC,PATCH +6),(L1,6 BA(TABL))'—"l
or minus on optionol hexodecimal or decimal off- -
set. Hexodecimal volues ore distinguished from (LW, 9 *WA(VAL) + 9,6),(B MAP +. F1)

decimal volues by o period preceding the hexodec-
imal volue (i.e., .A9B). »

148 Overlay Contro! Commands

| fmoomr (SEG, 0), (LOC, U:PCB+. 140), . 3F, +.F, 250, ~1

/ :MODIFY (SEG,1),(LOC,CCI +.80),(LL,5 0), -7

l“: (BAL, 15 SERCHTAB),(MTW, -1 FLCHG), -

L mLezecer +5),u8,6 0,5),]

L—(STB,é *WA(TABL) + 1,5),(LW,0 . 4E)

/:MODIFY (SEG,3),(LOC,FPTLO),M:LO + .1 INOOOO,j

[—-.mooom,smo,umo,aun,ao,o

In reporting MODIFY commond errors, ony EBCDIC string,
decimal number, or hexadecimal number that is seporated
by o comma, blonk, plus sign, or minus sign (ignoring po-
rentheses) is counted as on item. An exomple of items on
o MODIFY command is given in Figure 19,

SASSIGN The ASSIGN control command is used to
create, initiolize, or modify DCBs at load time. If the DCB
is in the progrom's DCBTAB table, it will be either initial-
ized or modified. If the DCB is not naomed in DCBTAB, the
Loader will build the DCB from the porometers on the
sASSIGN control command in an unnomed DCB's entry. An
error diagnostic is output if an unnamed DCB entry is not
available (see “Load Time ASSIGN"),

The format and options are identical to the Monitor IASSIGN
control commond. The :ASSIGN control commends must be
the last commonds in the control command stack.

Exomple: Asign a DCB at Lood Time
r:ASSlGN (F:2,LPA02),VFC,(RECL,133)

In this exomple, the DCB F:2 is essigned to the line printer.
Verticol formot control Is specified, so that the first byte in
each record controls the spacing on the line printer. Al-
though 133 bytes are output for each record, only the lost
132 bytes are printed because VFC is specified. ;

sPUBLIB The PUBLIB control command is used to specify
the object modules from which the Public Library is to be
crected. The order of the parameters determines the order
of looding.

The form of the command is

) ()]

where the input options ore the same as for :ROOT,

If there are no input options on the PUBLIB control command,
the first object module on the GO file will be input.

When the specified object modules have been input, the
Loader searches the libraries (specified on the OLOAD con-
trol command or the System Library by defoult) to satisfy
any unsatisfied primary references. If o COMMON, labeled
COMMON block, or other DSECT is encountered in an object
module of the Public Library, the lood process is aborted and
an error diognostic is output. If the severity level exceeds
zero in the lood process, the Public Library is not looded.
If anything was written on the Public Library file, the file
is destroyed and on error diagnostic is output.

1MODIFY (SEG,2), LCI+.F),(LW,6 * -1,6),(LI, e
/ (SEG,2),(LOC,CCI+.F),(LW,6 *FWATAB - 1,6),(L1,1 BA(TABL)+.F),.FF

item 3 itJn 7 item 9 item item
1n 15
item 5
irem
item 2 item 8 13 item 18°
item
12
item 1 item4 item 6 item 10 item 14

Figure 19. :MODIFY Command Items Exomple

Overlay Control Commands 149

The following conventions conceming other control commonds
should be observed when using the PUBLIB command:

1. The FORE option must be specified on IOLOAD fto de-
fine the oreo that the Public Librory Is to occupy ot
execution time. M the limits of this orec ore exceeded,

the Looder aborts.

2, The FILE option on IOLOAD must either specify the
name of the Public Librory file being creoted in the
Foreground orec or omit the arec nome so that it de-
foults to FP,

3. The TEMP, PUBLIB, GO, ond TASKS options are
illegal, ond if used, the Looder will abort with on
OLOAD control command error.

4, BOUND should be ovoided unless a special debug ver-
sion of a Public Library is being creoted.

5. ROOT, :ASSIGN, :LCOMMON, end :COMMON
contro! commands connot be used in creating © Public
Librory. The :RES commond cannot be used in the
PUBLIB commoand substock, but may occur in @ SEG
substack of o Public Librory load deck.

6. Asingle :SEG command substack may follow o :PUBLIS
commond substack. This is intended primarily for de-
fining o context dato area to be used by reentrant Pub-
lic Librories. The segment so defined will be acquired
in separate reol memory for each secondary task re-
quiring the Public Library. It will not be subject to
memory manogement calls. The only parameter groups
permitted for this :SEG commond will be "EXLOC*" ond
"input option" as described for the :SEG command,
earlier. (Note thot the LINK parometer group, re-
quired for other :SEG commonds, is not allowed for o
Public Library context :SEG command.) The substack
for this command moy contain only :RES, :MODIFY,
:LIB, ond :INCLUDE commands.

Example: Create Public Librory From Specified Module

:PUBLIB (FILE,SP,MODULE,10)

In this exomple, the Public Librory will be created from the
first 10 object modules in the System Librory.

Exomple: Crecte o Public Library with o Context Segment

(:RES (CONTEXT,100)

fzSEG NONE, (EXLOC,9000)

:PUBLIB (FILE,SP,MODULE,10)

150 Program File

n this example, the Public Librory will be created from the
first ten ROMs of the System Library. The Public Librory
will include o segment of 100 (decimal) words at loca-

tion 9000 (hexadecimal).

ILMHOR This command allows the user to specify volues
for certain tosk control porameters when the lood module for
the task is linked. These parameters do not offect the link-
ing operation in any way; they ore mainly saved in the lood
module header for reference by the task initiation service.
The command or ony of its options may be omitted, in which
case CP-R task initiation willprovide volues for the param-
eters not specified. For most uses, the defoult values pro-
vided are appropriate, so the command may be omitted.
When it is used, the :LMHDR command must oppeor past all
commands other than :ASSIGN commands. It may not appear
during linking of a PUBLIB,

The options which may appear on o :LMHDR command ore
described below. .

KLMHDR option{, option, .. ., option]

where option is one of the following:

(SEC8,m) This option specifies that the task will be
allowed no more than m asynchronous service calls,
If the option is omitted, the system default value
pertains,

(RECB,m) This option specifies that the task will be
ollowed to service no more than m signals or other
events. If the option is omitted, the system default
value pertains.

(ENQ,m) This option specifies that the task will be
allowed no more than m simultaneous enqueuves for
resource availability. If the option is omitted, the
system defoult value pertains,

PROGRAM FILE

The Program File contains the root ond overlay segments in
core imoge format and o one-gronule heoder. The progrom
heoder is located ot gronule 0 ond contains informotion nec-
essary to run-load the program,

ROOT SEGMENTS

The root is divided into two parts (see "Core Loyout ot
Execution Time" loter in this chopter). Portfone of the
root always beings in granule 1 of the Progrom File,
ond contains the PCB, root code, library code, labeled
COMMON, ond RES oreo for the root, Port two contains
the DCBTAB, OVLOAD Table, Looder-creoted DCBs, ond
the Temp Stocks.

The Temp Stocks are not output on the Program File. Eoch
port of the root is written as o continuous string of bytes.

—

OVERLAY SESMENTS -

Eoch everlay Wl begins on o gronule boundary ond is »

written on the Program File as o continuous string of bytes.
The order of segments on the file is unimportant, since the
granule displacement pointer (in the OVLOAD table) for
eoch segment specifically determines its position. Load
module images of segments connot be longer than 16K words
(64K bytes); however, since RES oreos ore omitted from the
Jood module, :RES commands moy extend the size of a
ssgment beyond 16K words.

TEMPORARY DISK FILES

The Looder uses six scratch files in the Bockground Temp
area of the disk (X1,X2,...,X6). If one of these files
overflows, the Loader completes the pass over the object
modules even though the lood will be oborted. The Looder
calculates the number of records (for sequential files) or
gronules (for direct-occess files) required for oll scratch
files ond lists this information on the Map. With this in-
formation, the user can then allocate the Background Temp
files with an JALLOBT command and relood the program,

LOADER-GENERATED ITEMS

All items discussed in the following paragraphs are gener=
ated by the Loader ond located in the root segment of the
overlay progrom (see Figure 22 in this chapter for o diogram
of the core allocation).

PROGRAM CONTROL BLOCK

The PCB is built by the Loader and located at the FWA of
the overlay program area.

BATA CONTROL BLOCK

The Looder automatically includes o copy of the M:SL DCB
in ony program that has overlay segments, (M:SL is used by
the memory monagement functions to reod in overloy seg-
ments at execution time.)

Any external DEF/REF that begins with an M:or F: is de-
fined to be either a system (M:) DCB or user (F:) DCB, DCBs
referenced by the progrom that are not satisfied at the con-
clusion of the load process are either created or allocated
by the Loader. Copies of system and FORTRAN DCBs are
created with their standard system parometfers ond opero-
tional label assignments. Space for user DCBs is allocated
at the rate of seven words per DCB.

T

Parometers for user or system DCBs moy be defined by either
JASSIGN control commands at execution time (for back-

ground programs only) or :ASSIGN confrol commands ot
lood time.

The wer con create his own DCBs within the sourcs code
end locate them in any segment of his overlay progrom.
Howeves, if the user wishes to change porameters in o DCB
ot execution time via an IASSIGN commahd, he must de-
clore the DCB os an extemna! definition (with a name that
begins with an F:) and locate the DCB in the root segment.
To utilize the FORTRAN capability of performing 1/0
by wing varicbles as operational labels, the user can
specify {on the OLOAD control command) o number of un-
named DCis to be allocated by the Loader. The user must
nome ond define these DCBs before the progrom executes;
either ot load time (with :ASSIGN), or execution time
(with IASSIGN),

DCBTAB

The DCBTAB table is created by the Loader, and contains
the EBCDIC name (if ony) ond location of each looder-
recognized or created DCB in the rqot of the overloy
progrom. The EBCDIC name of an .unnamed DCB is inserted
when the DCB is given a nome by either the IASSIGN or
tASSIGN control command,

OVLOAD TABLE

The OVLOAD table is built by the Loader and contains the
information necessory for memory-monagement functions to
access overloy segments at execution time. The OVLOAD
table consists of one entry for each overlay segment, with
o total of eleven words per entry.

TEMP STACKS

The Looder allocates space for the overlay progrom's user
ond CP-R Temp Stacks either according to the number of
words specified on the OLOAD control command, or by
default. The Temp Stacks ore located ot the end of port
two of the root segment ond ore not output on the Program
File (see "Core Loyout of User Progrom at Execution” loter
In this chopter).

EXTERNAL DEFINITIONS

The Looder odds the extemal DEFs F4:COM, U:PCB, ond
P:END fo oll programs except for Public Libraries. F4:COM
is the name of FORTRAN's blank COMMON, The initial
size is set to zero and changed fo the lorgest size encoun-
tered during the lood process. If theregre no references
to F4:COM, blonk COMMON is alitcated with o size
of zero. The Looder indicates the LWA + 1 (including
blank COMMON) of the looded overloy progrom by on
extemal definition, P:END. Extemol references to P:END
within the overlay progrom will be linked to this defini-
tion. The externol definition U:PCB hos as its value the
FWA of the PCB.

Temporary Disk Files/Looder-Generated Items 151

The extemal DEF FP:MBOX is odded to primary foreground
overlay programs by the Looder only ifan erea wos ollocated
ot SYSGEN time. FP:MBOX Is the name of the primary
program's mailbox. Extemol references to FP:MBOX will
be linked to this definition. Secondary tasks cannot use the
mailbox for intertask communication.

LIBRARIES

The Overlay Loader supplies the capability to search the
System Library or the User Library in any order. The default
condition is for the Looder to search and load only from the
System Library. Control commands ond keywords enable the
user to control more specifically the search ond lood options.
Note that an attempt will first be made to satisfy all REFs
with DEFs from the Public Library, if a Public Librory has
been specified on the OLOAD control command,

If any unsatisfied primary references exist ofter looding the
specified modules for a root or an overlay segment, the

Loader searches the library or libraries in the specifiedorder
to satisfy those references. Thus, if an extemal REF is mode
to a higher level segment, the name should not be the same
as a library definition. Consider the following:

2

If segment 1 contains a primary reference, 9SIN, it will
nomally be satisfied by loading aLibrary at the completion
of segment 1. Thus, if the definition 95IN occurred in seg~
ment 2, it would be in error (a duplicate definition). The
loading of 9SIN from the library can be suppressed by using
the EXCLUDE command. In this case, the forward REF would
be linked ond no duplicate DEF would occur. However, if
the definition 9SIN occurred in the root, or in the library

looded in the root, no search for 9SIN would be mode in

segment 1, and the occurrence of the definition 9SIN in seg-
ment 2 would be in error, Primary references can occur in
two ways: As external references in o module, or by listing
the primary references on the INCLUDE control commond.

SYSTEM AND USER LIBRARY LIBRARIES

Cross-references between System and User Libraries are ol~
lowed. However, since each librory is searched only once
per segment, the order of search is important,

If Library A contains references to be resolved by Library B,

the search criteria :LIB (A, B) must be specified to guarantee
cross-reference resolution. If B also contained references

152 Libraries

fo A they would not be resolved. (Note that these remarks
do not apply to cross-references within any single librory).

Generclly, the System Librory should contain the FORTRAN
Math ond Run-Time Routines ond should be independent.
The User Librory is o repository for user subroutines ond al-
ternate Math ond Run-Time routines thot supersede the some
routines in the System Librory.

The typicol search order would be

:LIB (USER,SYSTEM)

where both librories are referenced. In this cose, all un-
satisfied REFs from the User Library would be satisfied
{where possible)} from the System Library,

ASSEMBLY LANGUAGE

Library routines may be coded in AP or FORTRAN IV,

ENTRY ADDRESS

Entry oddresses in library routines are ignored.

SYSTEM AND USER LIBRARIES ON DISK

The System Librory ond the User Library on disk ore struc-
turally identical. Each library consists of four files:

EBCDIC
MODIR
DEFREF
MODULE

The System Librory is located in the System Progroms (SP)
orea. The User Library is located in the Foreground Pro-
grams (FP) area.

Only the MODULE file contoins the actual binary modules
of the library. The other files are tables constructed by
the RADEDIT to focilitate the rapid search of the librory
by the Overlay Looder without actually reading the module.
The library is structured on the principle that access should
be os fost as possible, since it is performed frequently dur-
ing an overloy loading procedure, -

-

The three files: EBCDIC, MODIR, and DEFREF contain
enough information fo determine which modules from the
actual MODULE File ore to be loaded without examining
these modules directly. All four library files are constructed
ond maintained by the RADEDIT, These short files contain
coded information about the external definitions ond primary
referances for each module in the library.

To begin construction of a library, the vssr ollocates the
EBCDIC, DEFREF, MODIR, and MODULE files with the
RADEDIT, ond then copies the library's binary object mod-
ules onto the MODULE file. As soch module is copied,
the DEFs ond REFs are sconned, and corresponding entries
are built in the other files by the RADEDIT. Library rou-
tines may be odded or deleted by using the RADEDIT :COPY
ond :DELETE commonds.

PUBLIC LIBRARIES

The Public Library is a file containing a set of reentrant
subroutines in core imoge format that can be shared in com=
mon by oll secondary or all primary programs. The resultant
saving in core can be considerable where library routines

are shared. The Public Library is created from input modules
or library routines by the Looder (see "Forming a Public
Library”). The availability of the Public Librory is deter-

mined at execution time.

CALLING THE PUBLIC LIBRARIES

When a user indicates by the PUBLIB keywordon the OLOAD
control command that Public Libraries are to be used to sat-
isfy references, the names are set in the program header for
the Root Looder, ond the Public Library Symbol tables are
read from the Public Librory files ond odded to the looded
prograom's Symbo! table. The Loader will satisfy primary
external references with Public Library definitions at the time
the external reference is encountered in the object module,
not at the end of the segment (os when the other libraries
are searched), When the program is initiated, the header
is searched to determine if the program contains the name of
one or more Public Libraries. If so, and one of the named
Public Libraries is not already in core, the Monitor deter-
mines whether Public Library space is available. If avail-
able, the Root Looder reads in the nomed Public Library or
Libraries and the progrom executes. If the space is not
available for all Public Libraries referenced, the program
will be neither root loaded nor executed.

Each Public Library file is designated at Public Library cre-
ation time (see "Forming a Public Librory™). All Public Li-
braries are located in the Foreground Programs area of the

disk, Public libraries must be either primary or secondary;
they may not be both.

UBRARY PROTECTION

Secondary Public Library root segments ore given read-ond-
execute protection, asthey are shared. Contextsegments are
writable, since they are differently mapped for sach task,

RELEASING A PUBLIC LIBRARY

If no currently oxecuti;\g progrom Is utilizing o Public Li-
brary it is released.

A Public Library is created by using the :PUBLIB control
command in place of the ROOT command, ond modules may
be input ond libraries searched and loaded in the some mon-
ner as for standurd looding. Because eoch Public Library
has a unique name, more thon one Public Library con exist in
the system. Although no more than four Public Libraries con
be called by any one progrom, ony number con be crected.

ROUTINES USED TO FORM A PUBLIC LIBRARY
All routines used to form aPublic Library must be reentrant.

¥ the Public Library is primary, the user Temp Stack moy
be used directly for context, or the method of moving local
storoge in routines to the user Temp Stack on reentronce
con be employed (e.g., Real-Time FORTRAN subroutines
ond FORTRAN Run-Time Librory). FORTRAN main routines
ore not reentrant ond cannot be used.

Secondary Public Librories should use o context segment
fo achieve reentrancy.

Routines assembled in AP are acceptable provided the
reentrancy requirements are met,

No references to COMMON, lobeled COMMON, or
DSECTs are aliowed in ony Public Library routine.

Since DCBs in the Public Library could not be ossigned and
might not be reentrant, DCBs will not be allowed in ony
Public Library routine. Note that it is not possible for the
Looder to warmn the user about DCBs that ore not nomed
according fo the conventions ond made externals.

The file associated with each Public Library is in the FP
area. This file contoins the octual core imoge of the Pub-
lic Library ond the corresponding Symbol table used by the
Loader. The nome of the file must correspond to the name
given with the FILE keyword on the OLOAD control com-
mand, ond the file must be previously allocated in the FP
area by the user, If loading of the requested modules and
librories hos been completed and there are no remoining
unsatisfied primory references, the Looder writes the core
image and the Symbol table to the file in the FP area. K
unsatisfied primary references are found, the file in the FP
orea is destroyed. A file name of o previous Public Library
may be used, but ot the risk of obliterating the old file if
the new one cannot be completed.

MAP
a a
Three types of mops may be output fo M:LO following Poss 2
according to the MAP keyword on the IOLOAD control
command: o short mop, PROGRAM map, or ALL map. If
the MAP option is not specified, none is output.

The short mop is output when the MAP keyword oppears

olone. It consists of essential information about the over-
lay structure,

Public Librarles 153

"

The PROGRAM Moap consists of all elements of the short
Map, plus oll external definitions and control sections con-
tfained in the input modules (excluding those from Librory
ROMs). ‘

The ALL Mop consists of oll elements of the PROGRAM

map ond includes oll definitions oand control sections 3.
from Librory ROMs, A typicol PROGRAM mop is ilius- :
trated in Figure 20,

In Figure 20, the heoder keywords have the following
meoning:

1. Program Header Keywords:

FILE: Areo ond nome of the progrom file,

NUMBER OF SEGMENTS: Decimal number of each
type of segment.

LIMITS: FWA ond LWA of the Progrom areac.

BOUND: Hexodecimal volue on which object module
oddresses are bounded.

BLANK COMMON BASE: FWA of blank COMMON
with the SIZE specified in decimal words.

PUBLIC LIBRARIES: Nomes of the Public Libraries, if
any, referenced by the program,

TOTAL MEMORY SIZE: Sum of the memory sizes in
words of all segments of the progrom (includes
Root and COMMON segments; excludes Public
Libraries), in hexadecimal/decimal. This would
be the memory required by the progrom if it were
not overlaid.

TOTAL FILE SIZE: The hexadecimal/decimal number
of gronules used in the load module file.

4,
LIBRARY SIZE: Total number of words looded from the
user and/or system libraries.
PROGRAM ERROR SEVERITY: Set to one if ony kind
of error is encountered; otherwise, set to zero.
2. Looder-Supplied Structure Keywords: (All values ore
hexodecimal.) '
OVLOAD: FWA of the OVLOAD table.
PCB: FWA of the Prograom Control Block (PCB).
ENTRY: Entry word oddress for the root.
5.

UTSFWA: FWA of the User Temp Stock.

SIZE (first occurrence): Size in words of the User Temp
Stack.

RTSFWA: FWA of the CP-R Temp Stack.

154 Public Libraries

SIZE (econd occurrence): Size in words of the CP-R
Temp Stock. ,

DCBTAB: FWA of the DCBTAB.
Segment Heoder Keyword:
INPUT: Tota! number of hexodecimal words in the seg-

ment looded from the ROMs, RES, ond LCOMMON
control commonds.

LIBRARY: Total number of hexodecimal words in the '
segment looded from User and/or System Libraries.

MEM WL: Totol hexodecimal length in words occupied
by the segment in memory.

LM BL: Totul hexadecimal length in bytes of the seg-
ment image in the lood module file.

FWA: First word oddress of the segment,
LWA: Last word oddress of the segment.
ENTRY: Entry oddress of the segment.

ROMERR: Set to one if the error severity level is set
on any ROM input for the segment; otherwise, it
is set fo zer0.

LDERR: Set to one if ony loading errors ore encoun-
tered for the segment; otherwise, it is set fo zero.

GRAN: The gronule number (decimol) on the program
file where the segment's core imoge beings.

Control Sections:

Control sections input from the program ROMs ore listed
with the following information:

oddress size

ROM ROM number‘ thex.) (dec.)

Control sections input from user ond/or system librories
are listed with the following information:

{ULIB Record displocement oddress size -
SLIB in the MODULE file (hex.) (dec.)

-
DCBs

The user ond system DCBs ore listed ofter the control
section of the ROOT with the following information:

oddress
(hex.) ~—

SDCB] UNNAMED

uDCB

-+ o s e e e

1OLOAD (MAP,PRO,ALP),(FOR,6000,7000),(L1B,8YS), (UDCB,S), PRI
:ROOT (FIL,BT,GO,4)

:SEG (LIN,1),(FIL,BT,GO,3)

:RES (ABC,400)

sASSIGN (F:50,L0)

:ASSIGN (F:51,L0)

tASSIGN (F:52,L10)

PROGRAM MAP
FOREGROUND PROGRAM

FILE BT,OV
NUMBER OF SEGMENTS: 2 ROOT
1 COMMON
1 OVERLAY
0 PUBLIC LIBRARY
LIMITS: FvA: 6000 LWA: 6903
BOUND 2
BLANK COMMON BASE 6686 SIZE 200
PUBLIC LIBRARIES NONE
TOTAL MEMORY SIZE: 904/ 2308 WORDS

TOTAL FILE SIZE:

8/

8 GRANULES

LIBRARY SIZE 4A9/ 1193 WORDS
PROGRAM ERROR SEVERITY 1

OVLOAD PCB ENTRY UTSFWA SIZE RTSFW4A SIZE DCBTAB
674E 6000 60OE 67D8 64 683C c8 67BA
ROOT PART ONE
INFUT LIBRARY MEM WL LM BL FWA LWA ENTRY ROMERR LDERR GRAN

35 405 43A 10E4 6000 6439 60CE 1 0 1
CONTROL SECTIONS

ROM 1 600E 20

ROM 2 6022 4

ROM 2 6026 2

ROM 3 6028 4

ROM 3 602C 2

ROM 4 602E 4

ROM 4 6032 2

SDCB F:108 6778

SDCB M:DO 6782

SDCB M:0C 6789

SDCB M:SL 6790

SDCB F:50 6797

SDCB F:51 679E

SDCB F:52 67A5

SDCB UNNAMED 67AC

SDCB UNNAMED 6783

DEF IM A 6022 0

DEF IM B 6028 0

DEF IM C 602E 0)
U REF IM D

DSCT IM F4 :COM 6686 O 200

DEF IM P:END 6904 O

DEF IM U:PCB 6000 0

DEF IM v#a 6026 ©

DEF IM V#B 602C 0

Figure 20. Typical PROGRAM Mop

Public Librories

155

DEF IM viC 6032 0
DEF IM SMAIN 60CE O

ROOT PART TWO

INPUT LIBRARY MEM WL IM BL WA LWA + ENTRY ROMERR LDERR GRAN
iB6 0 186 228 674E 6903 4] 0 0 7

CONTROL SECTIONS
SEGMENT 1 LINKED TO 0

INPUT LIBRARY MEM WL LM BL FWA WA ENTRY ROMERR LDERR GRAN

1A8 Ay 24C 2F0 643A 6685 0 0 0 6
CONTROL SECTIONS
ROM 1 643A 4
ROM 1 643E 2
ROM 2 6440 8
ROM 2 6448 4
ROM 3 644C 4
ROM 3 6450 2
DSCT IM ABC 64F6 © 400
DEF IM 0A 643A O
DEF IM (1] 6440 O
DEF IM oc 644C O
DEF IM V#0A 643E O
DEF IM V#0B 6448 O
DEF IM V#0C 6450 0
BLANK COMMON

INPUT LIBRARY MEM WL 1M BL FwA WA ENTRY ROMERR LDERR GRAN
cs8 0 ce 0 6686 674D 0 0 0 ?

CONTROL SECTIONS
LOADING WAS COMPLETED

FILE BT,0V USED 8 GRANULES
FILE BT,X1 USED 0 GRANULES
FILE BT,X2 USED 2 GRANULES
FILE BT,X3 USED 2 GRANULES
FILE BT,X4 USED 2 GRANULES
FILE BT,X5 USED 2 GRANULES
FILE BT.X6 USED 0 GRANULES

HARNING: UNSATISFIED REF'S

END OF MAP
{FIN

Figure 20. Typical PROGRAM Mop (cont.)

15 Public Libraries

DEFs, REFs, and DSECTs .

The externcls ore listed with the following lnfol;n:-:ﬁon:

a.

N

vmsatisfied, undefined, or
wnallocated)

= doubly defined or referenced

Is o constont, It is expressed os o lnmd--eclmcl
number followed by the letter 'C'. For undefined
symbols, the address field is blonk.

f. The DSECT size in words (decimal).

b- [BSCT] = dummy section ERROR DIAGNOSTICS
DEF = definition The Overlay Looder outputs diognostic messages to M:OC
< et ond M:LL. Duplication is suppressed if OC ond LL ore
REF primary reference assigned to the same device,
. SREF = secondary reference
K an operator response is required, the Loader will call the
“WAIT" function. The operator should hit the console
c. {PL = Public Library interrupt and key in one of the following:
uL = User Librory C Continue,
SL = System Librory X Abort,

L IM = Input Module coC Reod the corrected commond from M:OC
ond continue (used only in response to con-
trol commond errors).

d. The symbol nome in EBCDIC (one to 43
choracters).
Note that the "WAIT" routine aborts if on JATTEND
control command has not been encountered in the job stack.
e. If the definition is on oddress, it Is expressed as o The diagnostic messages in Table 19 are output by the
word address ond a byte offset. If the definition Overloy Loader.
Toble 19. Overlay Looder Diognostics
Text Meoning Action
BACKGROUND TOO SMALL User's progrom connot be loaded Abort
in the current size of the bock-
ground. This is o function of
the number of external symbols
ond forward references thot o
progrom has, not a function of
the program length.
BINARY CARD ENCOUNTERED INSTEAD OF CC A binory record was encoun~ Wait
tered on the C device insteod
of o control command.
sot onfrrmdd Unexpected beginning-of-fope Abort
{oreo, nome hos been encountered on the
specified device/file. <
BUF SMALLER THAN DATA RECORD DCB x:x0000cx Specified DCBhas been amsigned | Abort

fo a record size larger thon the
/O buffer associated with the
Reod request. Either the user hes
assigned incorrectly or the Looder
has o program error.

Error Diognostics

157

. o

Table 19. Overloy Looder Diognostics (cont.)

specified on the JOLOAD com-
mond ond o :PUBLIB commond

Text Meaning Action !
CC ERR: BACKGRO!IND AND PRIMARY The option PRI oppeared on on Abort, The op-
OLOAD commond for o back- tion FORE must
ground progrom, appeor if PRI is
specified on the
OLOAD commond.
CC ERR: DUP NAME IN ITEM xx Item number xx on the commond Wait
Is o duplicate of a nome in
the symbol toble.
CC ERR: DUP SEG 1DENT ldent on :SEG commond is a dup- | Woit
licote of o previous segment's
ident.
CC ERR: FOLLOWING ITEM xx There is an error following Abort if JOLOAD
item xx on the commond (e.g., CC. Wait if any
o parometer hos been omitted, other CC.
on extro parameter has been
included, etc.).
CC ERR: ILLEGAL CC SEQUENCE Looder commonds have been Wait
ordered incorrectly.
CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (PUBL, name) Option (PUBLIB, nome)was speci- | Abort
fied on IOLOAD and o :PUBLIB
command has been encountered.
CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (TASKS, value) Option (TASKS, valuve) was Abort
specified on IOLOAD ond o
:PUBLIB commond has been
encountered.
CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD (TEMP, value) Option (TEMP, volue) was speci- | Abort
fied on JOLOAD ond o :PUBLIB
commond has been encountered.
CC ERR: ILL OPCODE IN ITEM xx Specified operotion code is Wait
either illegal or unimplemented.
CC ERR: ILL SEG IDENT Seg ident on the :MODIFY Wait
command does not motch the
segment being modified.
CC ERR: ITEM xx Item number xx on the command Abort if IOLOAD
is in error, CC. Wait if ony
other CC.
CC ERR: MODIFY OUTSIDE SEG LIMITS One of the locations on the Wait'=
. sMODIFY commond Is outside
the limits of the segment.
CC ERR: NEED (FORE, fwa, Iwa) OPTION FOR PUBLIB LOAD Option (FORE, fwa, lwa) was not Abort

158 Ervor Diagnostics

has been encountered.

-
v

Table 19. Overloy Loader Diagnostics (cont.)

Text Meoning Action

CC ERR: SEG IDENT NOT 1ST OPTION Segment ident (LINK, ident}) is Wait
not the first option on the :SEG
command.

CC ERR: SEGMENTS ORDERED INCORRECTLY :SEG commands hove been in- Wait
put in the wrong order.

CC ERR: SPECIFIED AREA FOR PUBLIB LOAD NOT ‘FP' Option (FILE, orea, name) on Abort

IOLOAD did not specify the
Foreground Progroms area (FP)
aond o :PUBLIB command has
been encountered.

CC ERR: STEP OPTION ILLEGAL WITHOUT ATTEND An JATTEND command must be Abort
included in the job when the
STEP option is specified.

CC ERR: UNDEFINED FILE area, name Area ond file specified in the Abort if 1OLOAD
option (FILE, area, nome) has not CC. Wait if any
been defined by the RAD Editor. other CC.

CC ERR: UNDEFINED SYMBOL IN ITEM xx Symbol nome in item xx on the Wait
:MODIFY command has not
been defined.

DCB CANNOT BE A DSECT A DCB was encountered in the Abort

nomed segment thot wos as-

ULIB sembled os o dummy section
SEG 300 lROM XXX instead of being port of the
SLIB control section.
DCB HAS BAD PARAMETERS Specified DCB has bod poram- Abort
DCB xzx00xxx eters. Either the user has os-
signed incorrectly or the Over-
lay Looder has o progrom ervor.
DCB HAS INSUFFICIENT INFO Specified DCB contains insuffi- Abort
DCB x:300xxx cient information fo open o
Reod or Write operation. Either
the user has assigned incorrectly
or the Loader hos o progrom
error.,
DCB NOT ASSIGNED Specified DCB has been assigned | Abort
DCB x:x0000x fo the “null" device. Either the
user has asigned incorrectly, or
the Overloy Looder hos e pro-
grom error. : -
DEFAULT ENTRY ADDRwoxxx SUPPLIED FOR ROOT A tronsfer oddress was not en- Continue

countered on any ROM in
the Root and an entry address
wos not specified on the CC;
therefore, a defoult has been
supplied.

Ervor Diognostics 159

-

Table 19. Overloy Looder Diognostics (cont.)

Text Maeoning Action

DSEC™'S IN PUFPLIB LOAD Lcb :led COMMON blocks Abort
(DSECTs) ore illegol in the

ULIB Public Librories.
SEGaoooxx {ROM | xxx :
SLIB
EoT ON[17 End-of-tupe has been encoun- | Wait
» ROME tered on the specified device/file.

EXLOC TOO LARGE The execution locations of the Abort

SEG xxxxx specified segment will exceed
131K at the given EXLOC,

FILE DESTROYED area, nome Overlay Looder is oborting post Abort
the point where doto has been
written on the specified pro-
grom file, The first sector of
the file has been zeroed out.

FILE UNCHANGED arec, name Overlay Loader is aborting at @ Abort
point where the program file is
vnchanged.

WARNING: ILLEGAL LOAD LOCATION xxxxx Specified "lood location” origin Continue with
hos been defined with a value COMMON

uLIB
SEGxxxxx { ROM} xxx
SLIB

thaot is either not on oddress or
that lies outside the oddress limits
of the specified segment. (A
lobeled COMMON block must
be initiolized in the segment
where the block is allocated.)

non-initialized,

ILL SEG IDENT TERMINATED MODIFY'S

The :MODIFY commands have
been ordered incorrectly for

the (GO, LINKS) option. The
MODIFY mode has been termi-
noted at this point. K the user
wishes to continue, oll :MODIFY
commands thot follow will be
ignored.

Woit

LIB ROM'S EXCEED MAX
SEG xoexxx

Maximum number of library
ROMs that can be looded
is 2000.

Abort

MEMORY CONFLICT INVOLVING PUBLIBS USED

There is on overlap in the mem-
ory areos used by a requested
Public Library ond either another
requested Public Librory or o user
segment or root.

Abort

MONITOR CC ENCOUNTERED INSTEAD OF :ROOT or :PUBLIB

Monitor confrol commond was
encountered on the C device

Instead of o :ROOT or :PUBLIB
command.

Abort

60 Emor Dloﬁmsﬁu

.

Table 19, valuy Looder Diognostics (cont.)

Text Meoning Action
MOUNT PAPER TAPE ROM STEP option wos specified on w«.ﬂt. Operator
: {OLOAD ond the next relocot- should lood the
able objectmodule (ROM)is to be | popertape, inter-
input from the paper tape reader. | rupt, ond key in
R -cu.

NOT ENUF UDCBS An ASSIGN commond requires Continve. The
that o DCB be built, ond there DCB on the erring
are no unassigned DCBs (UDCBs) ASSIGN com-

remaining.

mond is not built,

CCl1
ONE
PROGRAM ERR: { TWO | ADDR 00
MAP
LiB

Looder hos o progrom error in
the nomed overlay ot the speci-
fied oddress,

Abort. Operator
should get o core
dump.

uLIB
SEG xxxxx ROMI xxx

SLIB
CCl
ONE
PROGRAM ERR: { TWO } SB=xx, ADDR xxxx Specified error status has been Abort
MAP returned from on Overlay Loader
(4]} call (in the nomed overlay) to o
Monitor I/O routine. The od-
DCB x:xxxxxx dress of the CAL ond the name
of the DCB are specified.
PROGRAM ERR: UNALLOCATED CSECT Looder has encountered o con- Abort
trol section thot has not been
ULIB ollocated; either o Looder,
SEG xxxxx ROM] xxx compiler, or assembler error
SLIB
PROGRAM FILE HEADER EXCEEDS ONE SECTOR Size of progrom file heoder was Abort
found to be greater thon one
sector.
RAD FILE TABLE FULL RAD File Toble size that was ollo- Abort
cated at SYSGEN is insufficient.
READING AN OUTPUT DEVICE A DCB thot the Overloy Looder Abort

DCB x:xxxxxx

reads with hos been assigned to
on OUT device. Either the user
has ossigned incorrectly or the
Looder has o progrom error.

I

ROM ERR: BAD SEQ

uLs
SEGiaxxx §{ ROM | xxx SEQNOxxx
SLIB

Sequence number of the binory
record does not equal oux,

Wait

Ervor Diognostics 161

Table 19. Overloy Loader Diagnostics (cont.)

Text Meoning Action - .
ROM ERR: EXPRESSION SIZE EXCEEDS MAX An object longuoge expression Abort
on the specified binary record
ULIB exceeds 120 bytes.
SEG00xx { ROM | xoxx SEQNOxxx
SLIB
ROM ERR: ILLEGAL LOAD ITEM Object longuoge on specified Abort
binary record cannot be trons-
ULIB loted (assembler or compiler
SEGx00x {ROM txxx SEQN Oxxx error).
SLIB
ROM ERR: NO MODULE END Module end was not encoun- Abort
tered on the last binory record
uLIe of the relocotable object
SEGxo0oxx { ROM | xxx SEQNOxxx module.
SLIB
ROM ERR: NOT OBJECT LANGUAGE Specified binary record is not Woit
in object languoge format.
ULIB
SEG s0uexx ROM‘ xxx SEQNOxxx
SLIB
ROM ERR: NOT STANDARD BIN Specified record hos o non- Wait
stondard binary format.
ULIB
SEGx0oxx { ROM | xxx SEQNOxxx »
SLIB
SMM OPTION ILLEG AL WITH FGD OR PUBLIBS Simplified Memory Manogement Abort
is legal only for background
progroms.
SYMBOL DECLARED BOTH AS DEF AND DSECT: xxxx The symbol xxxx occurred in Abort
the some path with the two
usages indicated.
TOO MANY ROM FILES The maximum numberof ROM files | Abort
that con be loaded is 127 per
segment.
UNDEFINED FILE area,nome Specified DCB has been assigned Abort
DCB x:xxxxxx to a disk file that has not been
defined by the RAD Editor.
UNDEFINED ORIGIN Looder has encountered o “load Abort

ULIB
SEGxuxxx { ROM | xxx
SLIB

location" origin with an expres-
sion thot cannot be resolved,

dd

UNEXPECTED EOD ON {’7“ Unexpected IEOD wos encoun- | Wait if the 1EOD
ores, tered on the specifieddevice/file. | was entountered
tnsteod of o ROM;
otherwise, Abort,
UNEXPECTED MONITOR CC ON | yyndd Unexpected Monitor control Abort

arec, nome

command wos encountered while

reoding ROM:s from the Cdevice.

.12 Emor Diagnostics

-
-

Toble 19, Overloy Looder Diognostics (cont.)

Toxt . Meoning Action
' yyndd e
UNRECOVERABLE RD ERR ON {oroo nome Transmission error has occurred Abort
’ while reoding from the speci-
filed device/ffile.
UNRECOVERABLE WR ERR ON {o’m"“"" Tronsmission error hos occurred | Abort
! while writing on the specified
device/file.
WARNING: DCB IN OVERLAY SEGMENT Specified DCB wos declored on Continue
external DEF in o segment other
uLiB than the Root. The DCB will
SEGxxxxx { ROM| xxx SEQNOxxx not be included in DCBTAB.
SLIB
DCB x:300000x
WARNING: DEF'D DCB NOT DEFINED Specified DCB wos declared on Continue
DCB x:xxxxxx external DEF ond the DEF was
never defined.
WARNING: DUPLICATE DEF'S User's progrom contains dupli- Continue
cate extema! DEFs. Map will
indicote the nome(s) of the DEFs.
WARNING: DUPLICATE REF'S User's program contins dupli- Continue
cate external REFs. Mop will
indicate the nome(s) of the
REFs. Occurs when identical
DEFs in different segments of
different paths are referenced
by the some REF (in o segment
common to both paths),
WARNING: ENTRY ADDRxxxxx OUTSIDE SEGMENT Entry oddress for the specified Continue
SEGxxexx segment is outside the segment's
oddress limits.
WARNING: ILLEGAL DCB ADDR Specified DCB was declared an Continue
DCB x:30000¢x externcl DEF ond the DEF has
been defined with either o neg-
ative oddress or a constont.
WARNING: ILLEG AL DCB NAME Specified DCB name is illegol Continve
ond will not be included in
ULIB DCBTAB. Monitor DCBs(M:) must
SEGi000xx {ROM] XXX hove stondard OPLB nomes. User
SLIB DCBs(F:) must not exceed eight
EBCDIC choracters in length. -
DCB x:30000¢x -
WARNING: LCOM nome OF SIZE »xxx GREATER THAN The nomed labeled COMMON Continve

ALLOCATED

ULIB '
SEG0000x { ROM | sxx SEQNOsoex
SLIB

block (DSECT) with the size
specified in words is greater
than the size allocoted,

Error Diognostics

163

Toble 19. Overlay Looder Diognostics (cont.)

Text Meoning Action
WARNING: NO ENTRY ADDRESS FOR ROOT Root does not hove an entry Continue
oddress.
WARNING: OVERLAY SEG GREATER THAN 16K Specified overloy segment ex- Continue
ceeds the moximum size record
that con be looded by the Mon-
itor SEGLOAD function.
WARNING: PROGRAM EXCEEDS SPECIFIED ADDR LIMITS User's program exceeds the od~ Continue
dress limits, either specified on
IOLOAD or the defoults for
background/foreground
programs.
WARNING: PROGRAM FILE RSIZE NOT EQUAL TO GSIZE Record size of the progrom file is | Continue
different from the gronule size. .
WARNING: UNDEFINED DEF'S User's program contains external Continve
DEFs thot either hove not been
defined or hove been defined
with an expression the Looader
cannot resolve, Map will indi-
cote the nome(s) of the un-
defined DEFs.
WARNING: UNDEFINED ENTRY ADDR Expression defining the entry od- | Continue
SEG xxxxx dress for the specified segment
cannot be resolved by the
Loader,
WARNING: UNSATISFIED REF'S User's program contains unsatis- Continue
fied externcl REFs or unallocated
DSECTs. Mop will indicate the
name(s) of the REFs and DSECTs.
WRITING ON INPUT DEVICE A DCB that the Overloy Looder Abort
DCB x:3000xx writes with hasbeen ossigned to
an IN device. Either the user
hos assigned incorrectly or the
Looder hos o progrom error.
yyndd WRITE PROT Specified RAD is write-protected. | Wait ond
Condition is brought ebout by
. . 1. Reset RAD pro-
system write protection or hard- tection swi :Z hes
ware write protect violation.
or
- 2. Interrupt and
key in “SYC",
a™
or
3. Interrupt ond
key in "X" if
the job is not
allowed to write
on protected
oreasof the RAD,

¥4 Error Diagnostics

USER LOAD-TIME ASSIGNS

M:0C8 AND F-DCB

DCBs identified by externcl definitions must exist in the
root for eoch unique reference to on M:DCB or F:DCB.
These are either inserted explicitly by the user or built im-
plicitly by the Loader, A user con change DCB essignments
in several ways:

1. By modifying the DCB at execution time.

2, By using o lood-time :ASSIGN (foreground and
background).

3. By using o run-time JASSIGN (used by background
jobs).

RUN-TIME ASSIGNS

Run~time JASSIGNs (by Job Control Processor) apply only
fo the background job step in which they ore inserted.
Chonge of assignment for foreground programs is permitted
only through STDLB operations, lood-time :ASSIGNs, or
DEVICE (set device/file/oplabel index) CALs.

LOAD-TIME ASSIGNS

Lood-~time :ASSIGNs are changes to the respective DCB at
load-time, 3o thot the given assignment remains os o port of
the progrom. This effectively ollows assignments for fore-
ground progroms, ond assignment of DCBs with nondefoult
cases,

FORTRAN INTERFACE

System interface between FORTRAN -produced progroms and
CP-R is the shared responsibility of the FORTRAN compiler-
Looder-CP-R complex. This complex enaobles the user to
progrom real-time programs for foreground operation using
Real-Time FORTRAN longuage without having to use sym-
bolic coding to create the system interface (see FORTRAN

job examples in Chapter 12).

Symbolic code ond control information con be used to give
the FORTRAN user added versatility in coses where compat-
ibility with other FORTRAN configurations is not o factor,
However, such coding is not required. Thot is, the user can
write ond execute o progrom fo service real-time interrupts
without eny symbolic embellishment of the FORTRAN
longuoge ond without destroying the real-time response
required.

COMMON ALLOCATION

BLANK COMMON

By default, blank COMMON is allocated beginning ot the
ond of the longest path as illustrated in Figure 21,

_ 1
L2 .
Root Blank Root
Part 1 3 COMMON | Port 2
4 .

F4:COM P:END

Figure 21. Blonk COMMON Allocation by Default

The default size of blank COMMON is determined by the
size of the largest blank COMMON encountered during
the loading of cll segments,

An optional COMMON control command allows the user to
specify the size ond/or location of blank COMMON, or to
force it to follow the segment defined most recently when
the COMMON command oppeored. In the following ex-
omple, the COMMON command is used with no poram-
eters. The size then defoults to that in the first ROM thot
references blonk COMMON, ond the locotion is the first
boundary (doubleword or specified) past the previous end-
of-segment. Figure 22 diograms the resulting memory
layout.

:ROOT. ..

:SEG (LINK, 1)...
:COMMON

:SEG (LINK, 2). ..
:SEG (LINK, 3)...
:SEG (LINK, 4). ..

-
Note that in Figure 22, segment 1 sets fle COMMON bose
so that segments 1, 2, ond 3, share olil COMMON, but seg-
ment 4 overlays a portion of COMMON. Thus, segments 1,
2, ond 3, might operate on a lorge array, leaving the results
in upper COMMON for segment 4, which con recloim the
remainder of the COMMON storoge. However, a core-
fully determined COMMON allocation in segment 4 would
be necessary fo align references to the upper portion of
COMMON.

User Load=Time Assigns/FORTRAN Interface 165

ot

|2
Root Blonk Root
Part1 | 3 COMMON | Port 2
4
F4:.COM P:END

Figure 22. Blonk COMMON Option

LABELED COMMON

Lobeled COMMON is allocated by the Loader either by de-~
foult in the segment in which the block is first encountered,
or specificolly, by the porometers on the LCOMMON con-
trol commond. All references to o lobeled COMMON block
must be in the same poth as the definition. Note that lo-
beled COMMON in the root is evaoilable to cll segments.

A lobeled COMMON block must be initialized in the seg-
ment that is ollocoted.

The :LCOMMON control command will ollocate lobeled

COMMON in the segment specified by the preceding :SEG
command, or will cause its allocation to be deferred until
o subsequent :LCOMMON or :RES command. The exomple

:LCOMMON (A, 100), (8, 101), (XRAY, 50)

:SEG (LINK, 201, ONTO, 0)

will ollocate o labeled COMMON block /A/ of 100 words,
o block /B/ of 101 words, ond o block /XRAY/ of 50 words

in segment number 201,

CONNECT

The Loader does not provide any focility for generating
code fo connect foreground programs to interrupts or fo
trigger interrupts. The CONNECT statement in FORTRAN
plus the Monitor CONNECT coll provides the necessory
interface,

166 Core Loyout at Execution Time

CALUNG GVERLAY SEGMENTS

The Overloy Looder generotes no implicit calls for looding
overlay segments, ond generates no explicit code for such
calls. FORTRAN progroms to be run in overloy form must
call the FORTRAN run-time routine SEGLOD (or its op-
tional alternate name, SEGLOAD), which calls the SEG-
LOAD function of the Monitor. The identification numbers
in the orgument list must correspond to the identification
number on the SEG control command. Programs thot use the
SEGLOAD function must be either background progroms
looded with the SMM option on the OLOAD commond, or
primary foreground programs.

The SEGLOAD function colls in the overlay segment ond
retums, e.g.,

CALL SEGLOD (1)
CALL SUBROUTINE .

where | is the segment ident.

MAIN PROGRAM NAME AND ENTRY

The entry point of o FORTRAN main program is not neces-
sarily the first locotion of the progrom. The compiler will
output on externaol definition to identify it os ¢ FORTRAN
main program. The entry point for thot progrom is either
the transfer address of the main program, or the volue spec-
ified with the ENTRY keyword on the :ROOT commond.

LABELED COMMON NAMES

Lobeled COMMON blocks ore identified as DSECTs, labeled
with on external definition the same os the biock nome.

SLANK COMMON NAMES

Blonk COMMON references ore identified os DSECTs with
the unique exterol definition nome F4:COM.

CORE LAYOUT AT EXECUTION TIME

The core storoge area ollocations for o typicatjegmented
program are illustroted in Figure 23,

L —

Program

| Arec

PCB

Optional Space for BOUND

Root Code (User Programs)

Root Library Progroms

LCOMMON (root only)

RES (optional)
SEG 5
SEG 1 SEG2
SEG 3
SEG 4
Blonk COMMON

OVLOAD Table

Looder Created DCBs

DCBTAB

User Temp Stack

CP-R Temp Stack

FWA of Prugrom

Part one of root segment
output to Progrom File

FWA Overloy Area

(BOUND and RES not shown)

LWA of Overlay Area

FWA of base of Blank COMMON (F4:COM)

FWA of part two of the root

Part two of the root

LWA + 1 of Program (P:END)

Figure 23. Standard Core Loyout of a Program

Core Layout at Execution Time

167

1. RADEDIT

RADEDIT is o bockground processor that performs allocation
of disk arecs by generating ond maintaining directories for
ali permanent files. Through commands input by the user,
RADEDIT performs the following functions:

e Adds or deletes entries to the permanent file directories
that, in turn, allocate and release’ permanent space
within o disk areo.

e Copies data files to and from disk.

e Copies datu files from device to device.

e Appends records to the end of an existing disk file.

e Compacts permanent file directories and permanent
disk areas.

e Truncates empty space from the end of disk files.

® Maps permanent disk file allocation.

e Maps library module allocation.

e Dumps the contents of disk files, areas, or tapes.

o Copies permanent disk files.

e Copies object modules contained in the libraries.

® Saves the contents of disk areas on a magnetic tape

device in a self-reloadable form.

® Restores previously saved disk areas to their disk
location.

¢ Maintains library files on disk for use by the Overlay
Loader.

® Zeros out (clears) complete disk oreas.

o Temporarily inhibits the use of bad disk sectors.

OPERATING CHARACTERISTICS

FILE ALLOCATION

RADEDIT performs disk allocation for all permanent files.
The nome, size, and location of each permanent disk
area are indicated through the user of a Master Directory
-that is set up at system generation in the resident portion
of CP=R. The permanent disk areas maintained by RAD-
EDIT are

Background programs (BP).
Data (D1-DF) and user defined areas.
Foreground programs (FP) contain User Library.

System programs (SP) contain System Library.

68 RADEDIT

RADEDIT controls file allocation by generating and
maintaining o directory entry for each file within the above
permanent areas. Every permanent area has o directory that
begins in the first sector of its own area. A directory con-
sists of entries with the following information:

o File name (moximum length of eight alphanumeric
characters).

Resident foreground program flag.

File type; blocked; unblocked, or compressed.
Gronule size in bytes (used for direct access).

File size (current number of records in file).

Record size (bytes per logicol record). |

Relative disk oddress of the first sector defined for
the file.

o Relative disk oddress of the lost sector defined for
the file.

o Extension allocation size.

Before any permanent disk file can be written, space
must be allocated for the file by adding a new entry to the
designated directory. Directory entries may be added or
deleted by using RADEDIT commonds. The following method
is used to allocate files:

1. Permanent disk files ore allocated sequentially, begin-
ning in the second sector of the area, with every file
beginning and ending on a sector boundary.

2. A new directory entry is odded os the lost entry to the

existing directory and the corresponding space for the
file is aliocated.

3. When all aveileble space in on orea is exhausted, o
complete search of the file directory is mode for un-
allocated areas mode ovoilable through file deletions.
The smollest orea containing @ sufficient emount of
space to allocate for the file is selected. I sufficient
spoce is not found upon searching the directory, the
operation is aborted. To overcome this problem, disk
squeezing may be requested to recover the unused stor-
oge within o permanent area by compressing the direc-
tory entries and files (see Figures 24 ond 25).

4. File deletion is accomplished by zeroing out the appro-

priate directory entry. <

SKIPPING BAD SECTORS

When o bad disk sector(s) is discovered, it is the user's re-
sponsibility to prevent it from being used by deleting the
defective file, declaring the bod sector(s) with :BDSECTOR,
and reallocating the file if it is o be regenerated.

——

Identification entry

File 1 directory entry |——<]File 1

Deleted directory entry |—=e|] Unallocated

File 2 directory entry File 2

Deleted directory entry |——-] Uncllocated

Bod sector directory entry | —-] Bad sector

File 3 —}File 3

Figure 24. Permanent Disk Area Before Squeezing

Identification entry

File 1 directory entry —1File 1

File 2 directory entry j—]File 2

File 3 directory entry |—]File 3

Bad sector directory entry —L Unallocated

Zeros Bod sector

Unaliocoated

Figure 25. Permanent Disk Arec After Squeezing

The method used to hondle bod sectors is os follows: the
:BDSECTOR command removes the sectors from use by plac-
ing a special entry in the file directory and allocating the
space os a file. The :GDSECTOR command returns the disk
space for use by deleting the file directory entry.

SYSTEM AND USER LIBRARY FILES

System and User Library files ore searched by the Overlay
Looder fo satisfy external references. These files ore gen-
erated and maintained by RADEDIT in a form that can be
tapidly ond easily searched by the Overlay Looder. The
System Library files must reside in the System Programs (SP)
area, ond the User Librory files must reside in the: Fore-
ground Programs (FP) area. Each library consists of three
unblocked files: the Module Directory File (MODIR),
DEFREF File (DEFREF), end EBCDIC File (EBCDIC), ond
one blocked file: Module File (MODULE). The user must
define and allocate these library files using the file names
that appear within porentheses cbove and defining the files

@s blocked or unblocked. As on ald in opproxi'ﬁn.ﬁng the
flle sizes, the wer con use the algorithms given below.

RADEDIT is the only processor that should write in the
librory files. The files are generated from information con-
tained in the object modules read in by RADEDIT. Each
module is identified within the library files by o DEF.
The first DEF encountered in the module is considered the
module neme, and no other DEF in @ progrom will be so
recognized. Any module may be referenced by using the
first DEF in a program, ond modules may be copied or de-
leted through its use. This module nome may not be the
same form os a DCB name (i.e., beginning with “M:"
or "F:").

ALGORITHMS FOR COMPUTING UIBRARY FILE SIZES

The following algorithms can be used to determine the ap-
proximate sizes of the four files in a library. It is not cru-
clal that the file sizes be exact, since any unused space
con be recovered via the :TRUNCATE command. The op-
proximate number of sectors ("MODIR) required in the
MODR file is

n =30
MODIR s
where
i isthenumberofmodules tobeplocedinthe library.
s is the sector size in words.
3 words is the length of a MODIR file entry.

The opproximate number of sectors (n) required in
the EBCDIC file is EBCDIC

"gBCOIC ‘27@
where
d s the unique number of DEFs in the library.
s is the sector size in words.
2 words Isthe averoge length of an EBCDIC file entry.

The number of records (n

MODULE) required in the MODULE
file is

n i the total number of modules in the librory.

GC; is the number of cord imoges in the ith librory
routine.

System ond User Library Files 169

The number of sectors ‘"DEFREF““’" DEFREF file Is

n is the total number of routines in the librory.
d " is the number of DEFs in the ith librory routine.
r is the number of REFs in the ith librory routine.

s is the sector size in words.

DISK AREA PROTECTION

Updating or squeezing of permanent disk oreas containing
informotion for real=time progroms (foreground programand
foreground dato areas) must not occur while the foreground
is utilizing these permanent oreas. The user must ensure
that RADEDIT is not modifying o permanent orea at the
same time o foreground program is using it.

Software protection of the System and Foreground Data areas
of the disk is provided by requiring the operator to key in
*SY" before any of these areas are modified by o back-
ground processor. The only areas that can be modified thot
do not require a SY key=in are the Background and Public
Data areas.

CALLING RADEDIT

When o IRADEDIT control command is read from the C de-
vice, RADEDIT is loaded into core memory from the disk.
Control is transferred to the RADEDIT which reods com=
mands from the C device that specify the functions to be
performed.

The form of the command is

IRADEDIT

RADEDIT is rerminated when o record with an | in column
one is read from the C device (with the exception of 1EOD).
An |EOD indicates an end-of-data to RADEDIT when data
is input via the :COPY command.

When RADEDIT is colled from TJE, the commonds SAVE,
RESTORE, GDSECTOR, BDSECTOR, and SQUEEZE ore not
available.

170 Calling RADEDIT/Command Formats/RADEDIT Commands

[, v ———— e

COMMAND FORMATS

All RADEDIT commands are input from the C ‘device and
{isted on LL. The general form for RADEDIT commands *-

identical to the control command format described in C

ter 2, with the symbols below being ued to aid in descrit

ing RADEDIT commonds in this chapter.

oa refers to a disk area and must be one of the
following:

8P is the Bockground Progroms area.
D1 through DF
FP is the Foreground Programs area.

or user defined areas.

Sp is the System Progroms area.

8T is the Background Temp area (can be used
with :COPY, :CLEAR, or :DUMP).

fid is a CP-R file identifier, with stondard defoults.
zz rvefers to any disk area.

nnnnnnnn refers to a file nome or library module
(moximum name length of eight alphonumeric
characters).

yyndd
yy specifies the type of device: CR, CP, etc.

n specifies the 1OP number: A for 10P0,
8 for IOP1, etc.

dd specifies the device number: 03, 80, etc

refers to o physical device nome, where

OP refers to an operational label: 81, SI, etc.

RADEDIT COMMANDS

tALLOT The :ALLOT commond adds a new entry to the
specified permanent file directory that allocates space for
a new file. After space hos been allocated, files con be
written by either background or foreground programs. The
space allocoted for the new entry is zeroed out.

The form of the command is

ALLOT (FILE, fid) [, (option]...[, (option)]

whers the options are
FORMAT, type specifies the file format where type is:

U for unblocked. -
B for blocked.
C for o compressed file.
The default volue is unblocked.
FSIZE,value specifies the decimal length of the

file in logicol records. The default value is 1000.

I

RSIZE,value specifies the decimal aumber of words
per record. The logical record size is weed in se-
quenticlly accening o file. For o compremed file,
record size Is omitted and the Monitor blocks com-
pressed files into 256~word records. Blocked files
hove o defoult value equal to 128 words per rec-
ord. K the record size Is greoter thon 128 words,
unblocked organtzation will be given. Unblocked
:i'laluncdcfoultneudsluqnl fo the gron-

e size. '

GSIZE,value specifies gronule size In words ond is
wed for direct access only. The defoult size will
be equal to the sector size.

RF indicates that the file contoins o resident fore-
ground program ond is applicable only if the FP
area is specified. I RF is omitted, the file does
not contain a resident foreground program. Any
progrom flagged os resident foreground will be
automatically looded into core every time the sys-
tem is booted from disk.

ESIZE[,value] specifies the decimal length of file
extents in logical records. An extent is allocated
and attached to the file onytime the file is out of
space. If the optional value is omitted, file ex-
tents will be the same size os the original file. If
the ESIZE parometer is not specified, no automatic
file extension will toke ploce.

FIX indicates that during o squeeze of the specified
area, the file is not to be combined with its ex~
tents. If fix is not specified, the original file will
be combined with all of its extents to form one file
if the greo is squeezed.

The FIX option is applicable only if the ESIZE op~
tion is present.

Examples:

1.

2.

An unblocked file:

+ALLOT (FILE,D3,TEST), (FORMAT,U), (FSIZE.SO)q

E-(llSIZE.90)

This example allocates space for the unblocked file
TEST in the D3 area of the disk, with o file size of
50 records and o record size of 90 words.

A blod:od nle:

¢ALLOT (FILE FP,TESTA), (FORMAT.I).—ﬁ

[—(FS!ZE,SO).(RSIZE@).IF

This example oliocates space for the blocked file TESTA
in the FP area, with a record size of 256 words and @
file size of 50 records. This is o resident foreground
program. :

©ory The :COPY commond copies files of data or
wmodules (EBCDIC, BINARY in standord binary format, or
nomstandord binory) from one device to another.! Files ore
copied until an IEOD or tope mark is encountered, except
when the CC option is specified, which is terminoted when
on :EOD is encountered. Individual records in the file may
be as large os 64K bytes if buffer space is avoilable. A
logical file mark will be written onto the output file,

On 7-track tape, a copy from o file to o device assigned to
on op label will be in pocked binory format. ¥ o device is
specified, the informotion (dato) will be written unpacked.

When nonstandard binary (BIN) or control commonds (CC)
are copied from the C device, the C device must be assigned
to 0 and reassigned ofter the copy is completed. The os-
signment is mode when the messoge

PIKEYIN STDLB C,0

is typed to the operator and reassigned when the message
HCOPY ENDED, REASSIGN C' |

appears.

An JATTEND cord must be used to force o pouse for operator
intervention whenever the 8IN and CC options are specified.

The general form of the commond is

FROM 10
FILE, fid FILE, fid
COPY (L18,0a,nnnnnnnn), (LIB,ac
) op ! op
e) (o

(.vrcX ,A0D][,urD](,BIN]{,CC][,FBCD}

[ne, [:LL])] [Asci][AscO)]

where

FILE indicates either o disk file or o whole disk
area. Areas CK ond XA are only allowed as input
files.

LIB indicotes a librory object module(s) in the SP
or FP area.

IN indicates an input operation from o non-disk
device is to be performed.

OUT indicates an output operation to o non~disk
device is to be performed.

VFC indicates vertical format control is desired on
printing. k|

ADD indicates records are to be added to the end
of an already existing file.

Eile=to-file copies should be between files with the some
RSIZE.

RADEDIT Commands 7

urD HiWMmhh“Mﬁnd
the current position of the file. Nommolly, the
file would be rewound before the copy started.

BIN specifies that nomtondord binory informotion
is to be copied from the cord reader or to the cord
punch.

CcC specifies that control commonds are to be
copied from the C device.

FBCD specifies that BCD input is fo be converted

fo EBCDIC.
(NFIL, [:LL }) specifies that multiple files are to
be copied. If n is specified, n files
will be copied; if ALL is specified, the copy will
continve until o double EOF is read. 'l’he default
is fo copy one file.

ASCl specifies that ASCH input is to be converted
to EBCDIC.

ASCO specifies that EBCDIC output is to be con-
verted to ASCII.

The following are exomples and explanations of the differ-
ent types of copies that can be performed.

Examples:

covv(m °" ndd}) L(FILE, fid)

This exomple copies o file of data onto the specified disk
file.

COPY (m, [:’; rM}) , (FILE, fid), €C

This example copies o file of dato containing control com-
monds from the C device onto the specified disk file.

COPY (IN, [;;’ g d}) , (FILE, fid), ADD

This example odds dato to the end of on already existing
disk file.

LCOPY (IN, op Md]) ,(L1B, a0)

This exomple copies the library object modules to the speci-
fied librory. The librory being copied will completely re-
ploce on already existing library .

<cory (I, [d} (LIB, ac),ADD

172 RADEDIT Commands

"hhwdbﬂnlﬁvy*hﬂ“bbﬂnpel-
‘fed librory.

LCOPY (FILE, Rid), (FILE, fid)

This exomple copies the contents of the first specified disk
file to the second specified disk file.

:COPY (UIB, oo, nennnnnn), (OUT. ;;ndd) |

This exomple copies one librory object module to the speci-
fied output device. The “nnnnnnnn® parometer is the nome .
of the librory ‘object module to be copied.

COPY (mz,ﬁd),(mn,{‘;;“dd),vrc' o

This exomple lists the contents of en EBCDIC file with
vertical format control.

<OPY (FILE, fia), (ouT, [1) l

This exomple coples the contents of the specified disk file
onto the specified device.

:COPY (FILE, fid), (om,{;: Md}),sm |

This exomple copies nonstondord binary from the specified
disk file to the cord punch.

COPY (FILE, o), (OUT'[:'«D

This exomple copies the contents of the JOEX access (XA)
or Checkpoint (CK) oreos to the specified output device.
-

PcorY The :DPCOPY commond copies the contents

of one disk pack to another disk . The entire contents

of the disk is copied (mpt for the alterncte trock area) -
unless otherwise specified

The :DPCOPY commond has the form

sDPCOPY (yyndd, yyndd) [,cxao][,cxwr],-—l
L L(ssec.nll[.nsEC.m) [, (OSEC,)]

where

yyndd are the physicol device names of the disk
storage devices. The first disk is the input device
ond will be copied to the second device.

CKRD indicates that read=-check will be done when
reoding the input device.

CKWT indicates that a write=check will be done
when writing the output device.

(SSEC,n) specifies to begin the copy with sector n.
The defoult is to start at sector 0. Note that
SSEC con apply to the input and output disk.

(NSEC,m) specifies that m sectors should be copied.
The default is to copy through the last user access-
able sector.

(OSEC,p) specifies that the output is fo start at
sector p. If this parameter is not given, the SSEC
value is used. If it is used, p +m must be less
than or equa! to the last sector on the disk.

SDELETE The :DELETE command deletes either o file di-

rectory entry and file from a permanent disk areq, or an ob-
fect module from the designated library. The space formerly
allocated is not used until a :SQUEEZE is executed.

The forms of the :DELETE command are

LIB, aa, nnnnnnnn
“DELETE {FILE, fid |

Exomples:

1. Delete o file:

:DELETE (FILE,BP, TESTA)

2. Delete on object module:

:DELETE (LI8,SP,CSCN)

This exomple specifies that on object module named
CSCN s to be deleted from the Library in the SP orea.

tCLEAR The :CLEAR command zeros out the specified
disk oreos which results in deleting all files ond file direc~
fories in the arec.

The form of the commond is

:CLEAR 2z,2z,. ..

where 22 is ony disk area.

Exomple:

‘CLEAR D1,DF

This example specifies that permanent areas D1 and DF ore
fo be zeroed out.

BQUEEZE The :SQUEEZE command regains unused
space within permanent disk oreas resulting from file dele-
tions ond truncations and library module deletions. Unused
space is regained by compressing file directory entries and
their associoted files, or librory file entries and their as-
sociated library modules. Within the libraries, the Module
Directory File (MODIR) and the Module File (MODULE)
entries ond modules are compressed to regain the unused
space. Spoce is regained in the remaining two files,
EBCDIC File (EBCDIC) and DEFREF File (DEFREF), by re-
generating them completely from the Module Directory and
Module Files. Exireme core should be exercized to ensure
there Is no file octivity going on in the area being squeezed.

The forms of the command are

1.
/:SQUEEZE 0g,00,0q, . . .

2

/:SQUEEZE ALL
3.

/ :SQUEEZE (LIB.ca)
Exomples:

1. Regoin umsed space in specified dfa:

:SQUEEZE SP

This example regains unused space between files the
SP area only, without affecting the internal structure
of the SP Library.

RADEDIT Commands 173

2. Regain space in oll permonent disk orecs.
$SQUEEZE ALL

This exomple regains unused spoce between all files
in all permanent areas. Libraries are not squeezed.

t$SQUEEZE (LIB,SP)

This example regains unused library spoce in the SP
Library.

STRUNCATE The :TRUNCATE command is used fo frun-
cate empty space from the end of specified file(s). K the
allocated disk space for a file is greater thon the ectua!
fength of the file, a considerable emount of space may be
left empty. This command will set the allocated space
equal to the actual length of the file.

The forms of the commond are

1.
| :TRUNCATE (FILE, fid), (FILE, fid)..., (FILE, fid)
2.
:TRUNCATE 00,00, aq, ...
Exomples:

1. Truncate allocated file:

TTRUNCATE (FILE, BP, TEST)

This exomple truncates empty space from the end of the
allocated file TEST in the BP orea by setting the ollo~
cated size equal to the actual size of the file.

2. Truncate oll files:

:TRUNCATE BP, D2, D3

174 RADEDIT Commands

This exomple truncates all files in the 87, D2, ond D3
areas.

AP The :MAP command maps the specified permanent
disk areas to the LO device (using the M:LO DCB). The —
map contains

1. Information concerning the area, consisting of the disk
oddress, write protection, area identification, words
per sector, sectors per track, and its beginning and end-|
ing disk oddresses.

2. Information from the Permanent File Directories con-
cerning eoch file in the areo; file name, formot,
beginning file address, ending file oddress, file size,
record size, granule size, end resident foreground pro~ .
gram indicator.

The forms of the commond ore

1.
sMAP ca00,00, ...

tMAP ALL

Exomples:

1. Mop specified permonent disk areas:

fur 8P,D4

This exomple outputs o map of the permanent areas BP
and D4 of the LO device.

2. Map oll permanent disk areas:

fAAP ALL

This example outputs @ map of all permanent ereas to
the LO device. -

-,

An exomple of a MAP SP output is illustrated in I
Figure 26.

$SMAP The :SMAP command produces a special, short | -
map of the files in the specified arecs. The command hos

ARFa UEvICte wyu®L1.8/ SECTUNS/ PFR]w enL Q] Te
ADDKESS SECTOW TRA(A - SECTUN SELYCR PruTELT
L riddd] 25e 1 1 281S §
FLGS 8npd RELATIVE GRaANIWLE QECORD FTILE APPHROXY XV M0
FILELAME JACCLULGT XTMY otelt tAD 81zt S17¢ S12¢ RECORDS St
Ok SELTL™ SECTNR (WYTES) (RYTES) (HKECS) REmaTr (SpLie)
cPuFILF " 1 248 1024 1024 oSn 1
1t " 259 L tvee 1024 l 0
t vav g 261 er? 1024 1024 12 ¢
R {d Lt PaA) PLY 1h2u 1024 16 «
rORWaAP [2@e9 S$18 1024 no (LY, 10
ANkt (X ’ 319 [38) 102u 1004] [
cew " s 32v Gl 1024 ' oen 1242 ebe
n|ran v S a4s S0« 1024 1 P o) 1]
EntTt v 8 sah L ¥ 1g 1024 1024 6 "o
Awal vLF (C s $41 ete 102¢ 1024 [0
AP “) w07 eTs 1124 1024 ¢9 n
CgST1r0gf 1. S LY L) -ny 10e 162u o «
$RLETLE o o+ S 3 L3 1t 10lu Y] 15 LY °
eSS~ n u ¢ (R 1] 7o 1024 1024 " ' “12
QarenlyY [C S (KD 194 tv2u 1920 ur 4
v b b FILESS 18
IF BT ING SECTLw S FOLY
QFC TS wtCuvewun Fy r
Figure 26. MAP SP Output Exomple
N
the same format as the :MAP command. The oulput on the The form of the commond is
LO device (using the M:LO DCB) for each area specified
consists of :LMAP aa[,00))
1. The nome of the area.
2, The nome of each file, its account, ond number of
records; or, if there ore no files, the messoge "AREA
CONTAINS NO FILES". where aa specifies the SP or FP area.
Example
- ——
tLEAP The :LMAP command maps the library files of the :LMAP SP

specified permanent directory to the LO device using the
M:LO DCB. For each area (SP or FP), all library files in
the areo ore mapped. The library map includes information
about the cbject modules in the librory files that consists of
the nome of each module, its relocatable length, and def-
inition and references in the module.

This example specifies the files in the SP orea and its asso-
ciated library are mapped.

RADEDIT Commands 175

CATALOG The :CATALOG commond s used fo get file ~ dumped. Files ore dumped by records, aoreas by sectors.

size and orgaonization information either about o particulor The EBCDIC is not given. I
file or about o group of files in a particular account and/or v

area. The two forms of the commond determine the type of The forms of the command are '

processing. |

form 1: a porticulor file. :
:DUMP (FILE, fid){, (SREC, value)][, (EREC, valve)]) |
ruw.oc;), (Fd), ...)

where
where fid is the standard file identifier.
fid is any allotted file, |
This form will display the file information for the nomed
files. SREC, value specifies the starting record (in
decimal) o begin the dump.

Form 2: for a group of files. EREC,value specifies the last record to be
dumped. :
CATALOG (ﬁd')[, L r])]

where 2.

:DUMP zz[, (SREC, value)] [,(EREC,volue)]
fid' is o standard fid with a null file name (e.g., !
.SPor LAACCOUNT or .).
f is o starting sort key, Its format is the same as where
the '‘name’ field of a fid. It need not be an ac~
tual file name. zz s ony disk area.
t Is an ending sort key in the some format as f above. SREC volue specifies the storting sector (in

This form will display all files in the area(s) and occount decimal) to begin the dump.

specified. If an area is given explicitly, only thot arec EREC .volue
will be displayed. If an account is given explicitly, only d’u 4
files in that occount will be disployed. The account is de= mpec.
foulted to the user's account if it is not specified.

specifies the lost sector to be

Examples:

The information displayed consists of the filenome, the ac- i
count nome, the area the file is in, its organization, and

the number of records in the file. The output is sorted al-
phabetically by file nome and account name.

. Dump specified file:

:DUMP (FILE,BP,TEST)

The ™" ond "t" porometers allow the list of files to be
limited to a particular range. Neither “f" nor “t" must be

actual file names. If "f" ("t") is given, files with names This exomple specifies that the TEST file in the BPorea
alphabetically before (after) it will not be displayed. If is to be dumped onto the LO device,

“£" (“t") is not given, the first (last) possible name is used

os the default. 2, Dump specified records:

43;
:DUMP (FILE,BP,TEST), (SREC,10), (EREC,20)

BUMP The :DUMP commond dumps, in hexadecimal,
the designated random or sequential access file onto the
LO device (using the M:LO DCB). All permanent areas

plus the JOEX Access area (XA), Background Temp area (BT), This example specifies that records 10 through 20 of
and Checkpoint area (CK) can be dumped. The RADEDIT the TEST file in the BP area are to be dumped onto
will sequentially access the designated file or area to be the LO device.

176 RADEDIT Commands

R

3. Dump specified sectors:

:DUMP BP, (SREC, 6), (EREC,9)

This example specifies that sectors 6 through 9 of the
BP orea are to be dumped onto the LO device.

4. Dump oll of specified disk area:

:DUMP BP

This example specifies that all of the BP area is to be
dumped onto the LO device.

XOMP The :XDMP command dumps the specified input

onto the LO device (using the M:LO DCB) in hexodecimal

ond EBCDIC. The input is read and edited according to the
device specified: cards for o card reoder; sectors for a disk;
blocks for a tape.

The form of the command is
yyndd
:XDMP(;i:‘) [, (FILE, value][, (FROM, value))
op

[.TO, value)]

where
yyndd is any valid input device,

.22 is any area. The period is necessary fo dis-
tinguish it as on area, not a file,

fid is any allotted file,

op is any oplabel which points to ony of the
above.

FILE, value applies only to tape input devices and
specifies the file in which the edit will start.
:XDMP olways assumes it is positioned ot the be-
ginning of file 1 ond will skip value-1 tape marks
to position to the correct file. The default is 1.

FROM, volue specifies the number of the first rec-
ord (card, sector or tape block within the speci-
fied FILE)tobe ;XDMPed. The default is O for
disk devices, 1 for all other cases.

.......

YO, value specifies the number of the lost record
within the specified FILE to be :XDMPed. The de-
foult depends on what Is being :XDMPed: for o file
it is EOT; for on area, EOA; for a disk device, the
last sector; for other devices, the 524,287th record.

The processing of the TO parameter, whether specified or
defoulted, depends on the FILE parometer. If a FILE nymber
Is specified, TO refers fo records within that file only, and
:XDMP will not process records beyond the tape mark (EOF) |
for that file (that is, the moximum value of TO is forced to
the number of records in the specified file).

When FILE is not specified, TO specifies the lost record to
process, without regard to single tapemarks (EOFs), If
double tapemarks (EOFs) are not found, TO-FROM+1 rec~
ords will be :XDMPed. Processing will never go beyond
double tapemarks.

Exomples:

' L]
:XDMP 9TABO

The tope on 9TABO will be :XDMPed from its current
position to the double EOFs.

2‘
XDMP T0 TO,5
The device or file aoddressed by oplabe! TO will have
the next 5 records :XDMPed.
3.
:XDMP TESTFILE.D3 TO, 10 FROM, 2
File TESTFILE in arec D3 will be :XDMPed from sector 2
through 10. :
4,

XDMP DPAFO TO,4

Disk device DPAFO will have its first five sectors
:XDMPed.

RADEDIT Commands 177

SAVE The :SAVE commond saves the specified disk
orea(s) on the BO device (using the M:BO DCB) for subse-
quent resforation. The BO device must be a magnetic-tape
device. The imoge of the designoted area(s) ond the CP-R
bootstrap are written on BO in self-reloodable format. The
BO output contains a bootstrap loader, followed by t e disk
imoge of the CP=R bootstrop, ond the designated orea(s).
Sectors contoining all zeros ore suppressed. Executing the
bootstrap looder couses the disk image fo be read into mem~
ory and restored to the disk(s) without CP-R control. The
bootstrap also types on TYAO! the dote that the save was
made, and any identifying text string included in the
:SAVE commond. The BO output can also be used to restore
the disk vio the :RESTORE command. The BO device is re-
wound and the dota soved is verified. The messoge

'SAVE TAPE OK'

is output and the tape rewound off-line (unlooded) if the
verification pass completes successfully .

The form of the commond is

. [ALL) 22,22, ...] ¢, ‘
:SAVE [Al.l. l [, ‘tape id']
where
ALL specifies all allocoted areas except BT, CK,

IS ond OS.

2z can be any disk orea.

‘tape id' is o message of up to 40 charocters to
identify the save tape. When the tope bootstrap
is executed this message will be output to the op=
erators console (TYAO1).

Examples:

1. Save specified areas on secondary storoge:

:SAVE SP, BP, 62, ‘SAVE BACKGROUND PROGS—]

L AND DATA'

This example specifies that the SP, BP, ond D2 areas,
with a preceding bootstrap and an identifying text
string, are to be saved on the 8O device for subsequent

2. Save ull orecs on secondary storage:

:SAVE ALL

178 RADEDIT Commmds

This exomple specifies that all disk areas except BT,
CK, IS or O5, with a preceding bootstrap, are to be
saved on the BO device for subsequent relooding .

MESTORE - The :RESTOIE commond restores the specified
permanent disk areas thot were soved by the :SAVE com-
mand.! Input is read from the Bl device (using the M:BI
DCB), ond the bootstrap is ignored. A CHKWRT is em-
ployed to verify the data restored.

The form of the command is

RESTORE 22,2z, ...

Example:

RESTORE SP, 8P, D2

This example specifies that the areas SP, BP, and D2 (pre~
viously saved with o :SAVE directive) ore to be restored.

:BDSECTOR The :BDSECTOR command specifies a group
of sectors on a disk that are not to be used by RADEDIT,
Sector 0 of an area cannot be specified as it contains the
first directory sector for thot orea.

The form of the command is

:BDSECTOR yyndd,{

number-number){number-number
number number tee

Example:

:BDSECTOR DPAFO, 300-311, 401

This example specifies thot RADEDIT use of sectors 300
through 311 ond sector 401 of the disk on DPAFO is to be
inhibited.

N

'IESTORE must be performed on the some device type from
which SAVE was performed, i.e., the device must have the
same sector size and some number of sectors per track.,

tGDSECTOR The :GDSECTOR command specifies thot
sectors previously inhibited for use by a :BDSECTOR com-
mand are fo be mode availoble for subsequent use. The disk
ond sectors must be the some as in a previous :BDSECTOR.

The form of the command is

:GDSECTOR yyndd, :m“""’:"""‘b‘ :m“'"*"'r"‘”"‘""]...

Exomple:
:GDSECTOR DPAFO, 401, 306-311

This example specifies that the previously inhibited sectors
306 through 311 and sector 401 are to be mode available.

sPFIL, :PREC, :REWIND, :SFIL, :UNLOAD, are identical to
the corresponding JCP control commands (see Chapter 2),
except for the leading colon. They permit tape position-
ing to be done without leaving RADEDIT.

tEND The :END command may be used to terminate the
RADEDIT processor. The form of the command is

ERROR MESSAGES -

The error Mesww by the RADEDIT pnd their meon-
ings are given in chlc

RADEDIT outputs error messoges on the OC ond LL de-
vices. If OC ond LL ore amigned to the some device,
duplication of messoges on LL is suppressed. If on op-
orator response is required, RADEDIT will call the "WAIT"
routine. If the background is operating in the “attend"

mode, the operator will be allowed to initiote o eonsole
interrupt and key in one of the following three commonds:

C continue and read next record from the C device.
X obort RADEDIT and return control to the system.
COC continue and read a record from the OC de-

vice (used only in conjunction with the error
messoge "ERROR ITEM xx*).

Otherwise, RADEDIT will wke the action indicated in
Table 20.

If RADEDIT aborts because of an irrecoverable 1/0 error,
the physical device name is included in the abort message.

DISK RESTORATION MESSAGES
<END
The messoges itemized in Table 21 are written on the
keyboord/printer during disk restoration vio the boot-
strap looder produced by SAVE. Unless otherwise speci-
fied, the computer will go into o WAIT ofter writing o
message.
Toble 20. RADEDIT Error Messoges
Maessoge Meaning Action Token
AREA xx CANNOT CONTAIN Hlegol orea specified. Only the FP area Operation is aborted.

A RESIDENT FOREGROUND

can contain a resident foreground

Master Directory.

PROGRAM program.

AREA xx CKSM ERROR A checksum error exists on the SAVE tape Operation is aborted.
in the specified area.

AREA xx CONTAINS NO FILES Specified area contains no files. RADEDIT wntinue::

AREA »x INCOMPATIBILITY Attempting to restore specified areo onto Operction is aborted.

o different type of disk from which it was
soved, or the area fo be restored is foo
lorge for the same orea using the current

Error Messages/Disk Restoration Messoges 179

Toble 20. RADEDIT Error Messages (cont.)

Message

Meoning

1 Action Taken

AREA xx IS NOT ALLOCATED

Specified area wos not allocated at
SYSGEN.

Operation is aborted.

AREA xx DOES NOT CONTAIN
A LIBRARY

An orea other thon SP or FP was specified
that does not contain a library.

Operation is aborted.

AREA ot IS NOT MAINTAINED
BY RADEDIT

An attempt has been made to use areo
CK, XA, or BT which is not maintained
by RADEDIT.

Operation is aborted.

AREA xx TRUNCATED

Specified area being restored is lorger
than the same area using the current
Master Directory, but the data that was

lost contained all zeros.

Operation continues.

BUFFER SMALLER THAN DATA
READ

Data recd exceeds the omount of avail=
able buffer space.

Operation is aborted.

CKSM ERR ON SAVE TAPE

A checksum error has been encountered
while verifying the disk SAVE tape.

Operation is aborted.

CKSM ERROR

Last record in the object module being
read has a checksum error.

K the operator response is C, RADEDIT
reads the next record from the speci-
fied device.

DUPLICATE DEF xooxxxxxx

Relocatable Object Module being
copied to the library contains dupli-
cate definitions.

RADEDIT skips to the end of the mod-
vies A key=in of C causes RADEDIT
fo read the next record from the speci=
fied device.

oe, = yyndd }
areqg, name

on the specified device or file.

DUPLICATE FILE An attempt has been made to ollocate o Operation is aborted.
+ file using o name which already exists.
yyndd
EOT on {0 MM Unexpected end-of-tape was encountered | Operation is aborted.

ERROR ITEM xx

Item number xx on the command is in
error.

If the operator response is C, RADEDIT
reads the next record from the C de~
vice. If the operator response is COC,
the next record is read from the OC
device. This will enable operator to
rectify a directive error.

ILLEGAL BINARY RECORD

An illegal binary record (first byte not
X'1C', X'3C") has been read with an
object module.

If the operator response is C, the
RADEDIT reods the next record from
the specified device.

ILLEGAL FILE NAME

An attempt has been made to allocate a
file using GO, OV, or X1=X9 as a file
name .

Operation is aborted.
%*

ILLEGAL LOAD ITEM xx

Relocotable Object Module to the library
contains an illegal load item.

RADEDIT skips to the end of the mod-
ule. A key=in of C couses RADEDIT
fo reod the next record from the speci-
fied device.

180 Error Messages

~

TJoble 20. RADEDIT Ervor Messoges (cont.)

Memage

Meaning

Action Token N

ILLEGAL OPTION soxx

Option specified is not permitted on a
‘COPY command.

Operation is aborted.

ILLEGAL USE OF :COPY

The specified combination of input and
output devices on the :COPY command
is prohibited.

Operation is oborted.

INVALID RSIZE. UNBLOCKED
ORGANIZATION GIVEN

Maximum record size for a blocked file
has been exceeded. Unblocked organ-

fzation given,

RADEDIT continves.

NOT ENUF BCKG SPACE

Insufficient background space to perform
the requested operation.

Operation is aborted.

DISK OVERFLOW

Allocating the amount of disk storage in-
dicated by the "FSIZ" parameter on the
:ALLOT command would exceed the
space available in the area specified.

Operation is aborted.

RADEDIT I/0 ERROR xx
AT LOC 000

An 1/0 error has occurred at the indicated

location.

Operation is aborted.

WARNING: RECORD SIZES
DIFFER ON INPUT AND
OUTPUT FILES

Record sizes differ on copying from disk
file to disk file.

Operation Is continved.

REFERENCES TO F4:COM NOT
ALLOWED

An external definition or reference
F4:COM encountered in g Relocatable
Object Module being copied to the
library .

RADEDIT skips to the end of the mod-
ule. A key~in of C couses RADEDIT
fo read the next record from the speci-
fied device.

ROM DOES NOT CONTAIN
A DEF

Relocatable Object Module being copied
does not contain an external definition.

A key=in of C couses RADEDIT to
read the next record from the speci-
ﬁ.d device.

SAVE TAPE OK Disk SAVE tape has been verified No action.
correctly.
SEQ ERROR Last record in the object module being ¥ the operator response is C, RADEDIT

read has a sequence error. reads the next record from the speci-
fied device.
FILE s000000cx DOES NOT File does not exist in the specified area RADEDIT continves.
EXIST ' or aceount.
SPECIFIED ROM DOES NOT Relocatable Object Module does not Operation is aborted.

EXIST

exist within the specified library.

SREC VALUE GREATER THAN
EREC VALUE

Porameter error on the :DUMP command.

The lost record to be dumped precedes
the initial record to be dumped.

Operation is aborted.

a3

AREA xx NOT FOUND ON
SAVE TAPE

Specified arec cannot be found on the
disk SAVE tape during o :RESTORE
operation.

Operation Is continved.

ABOVE AREAS NOT
RESTORED

The areas specified by the preceding mes
soges were not on the SAVE tape.

RADEDIT aeborts.

Error Messoges 181

Toble 20. RADEDIT Error Messoges (cont.)

Message Maaning Action Token

DATA IN SECT@ AKX The indicated sector(s) reported errors Operation continues. '
[TO SECTOR xxxxx) MAY BE when being reod from the disk. The

LOST IN AREA zz data may not be correct on the SAVE

tope. When the area is RESTORED,
these sectors should be inspected for
the repeated string ‘LOSTDATA'
which was used fo reploce the dota
not read.

WARNING: ERRORS WRITING
SAVETAPE. CHECK LISTING.

Self-explanatory .

Operation continues,

FILE somxxxxx DELETED

- included in the bod sector(s) ond was

The beginning of the nomed file is

deleted from the directory.

Operation continues.

FILE socxxxxx TRUNCATED

The end of the nomed file is included
in the bod sector(s) range, ond was
truncated at the lost good sector.

Operation continues., .

yyndd WRT RESTRICTED

Specified disk is software write~protected.

Operator should toke appropriate ac-
tion: interrupt ond key in “SYC". Or,
if the job is not allowed to write on
protected oreas of the disk, inferrupt
ond key in "X" to abort.

Toble 21. Disk Restoration Messoges

Messoge

Meaning

Resulting Action

CKSM ERROR

A checksum error has occurred in reoding
the SAVE tape.

If the WAIT condition is cleared, the
bootstrap looder continues and accepts
the bad record.

DISK RESTORED OK

The disk restoration has been successfully
completed. :

Control is transfesred from the disk
bootstrap.

TRK = xxxx
DATA = ALL ZEROS

Specifies the contents of the disk control-
ler oddress register in hexodecimal at the
time of o check write error.

If the doto being written contains oll
zeros, this information is output. If
the WAIT condition is cleored, the
bootstrap loader continves. %

yyndd ERROR, A pority or fransmission error hos occur= There is no recovery.
SB = xxxx red on device yyndd. Both the device
status byte and operational status byte ore
disployed following “SB=",
182 Disk Restoration Messoges

Table 21. Disk Restoration Messages (cont.)

Messoge Meoning Resulting Action .
yyndd UNRECOG. , An urrecognized stotus hos been returned Upon clearing the WAIT condition,
SB = 3000x - from the indicated device. Both the de- the operation is retried.

vice status byte ond operational status byte
ore disployed following "SB=".

yyndd UNUS. END,

An unwsual end status has been returned

There is no recovery on a read opero-

TDV = xxxx from the specified device. Both the TDV tion. On o write operation, the write
status byte and operotional status byte is tried ogain aofter the WAIT is cleared.
are displayed following “SB=".

yyndd WRT PROT The disk is write-protected. Progrom will attempt the disk write

ofter on SY key=in.

Yy

Disk Restoration Messoges

183

12 PREPARING THE PROGRAM DECK

The following examples show some of the ways progrom
decks moy be prepared for CP-R operotion. Unless stoted
otherwise, stondard default cases for device assignments
ore assumed.

AP EXAMPLES

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT

lNexf Command
JSource Deck
f1apsiLo
1308

In this exomple, the symbolic input is received from the SI
device and the listing output is produced on the LO device.

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT,
LOAD AND G0 OPERATIONS

{ ROV
| 1pmD
| 10LOAD (MAP,PROGRAM),GO

lSowce Dec
JAP S1,LO, GO
1JOB

In this exomple, the binary object progrom produced from

the assembly is ploced in o temporory (GO)file from which
itis loter loaded ond executed. The resultont file is alwoys
temporory and cannot be retained from one job to another.
The Overlay Loader loads the program root into the OV file
for execution. A postmortem dump is specified.

184 Preparing the Program Deck

ASSEMBLE AND LOAD A PROGRAM WRITTEN FOR UNMAPPED
{RBM) BACKGROUND EXECUTION

{IROV
JremD
J10L0AD (AP, PROGRAM), GO, SMM

SOURCE DECK

1A si, L0, GO
1JOB

This exomple is like the previous one, except that the pro-
grom either uses SEGLOAD colls, or uses memory outside its
segments. The SMM (Simplified Memory Management) op-
tion on the JOLOAD command couses the progrom to be
loaded in o manner thot allows these actions, but can result
in much less efficient real memory utilization.

ASSEMBLE FROM COMPRESSED DECK WITH SOURCE
AND UPDATES, LISTING OUTPUT

Comupressed Deck
+END

Syrnbol ic Upd;fe
L—J+7,9

Symbolic Update

[Symbolic Update
___l +3

{1AP 51,C1,LO, LU
1JOB

Inthis example, the compressed input (deck) is received from
the CI device, listing output is produced on the LO device,

ond listing of the update deck is also produced on the LO
device. The update deck is enclosed in the bracket.

ASSEMBLE SOURCE PROGRAM, COMPRESSED
GUTPUT ON CARDS, LISTING DUTPUT

JNe xt Commond

) Source Deck
IAP S1,CO,LO
{JOB

In this example, the compressed card output is produced on
the CO device.

ASSEMBLE SOURCE OR COMPRESSED PROGRAM W
BATCH MODE, LISTING OUTPUT

[1eoD N\
~ |eop

Source or Compressed Input

J1EOD (optional)

Source or Compressed Input
1EOD (optional)

I Source or Compressed Input

=1 |AP SI (or CI),LO, BA
1JOB

In this example, successive assemblies are performed with
a single AP command until o double EOD is read. The de-
vice assignments and options on the AP command apply to
all assemblies within the batch. A program is considered
ferminated when an END directive is processed.

When botch assemblies consist of successive updates from

eerdhpnhmmdpomﬁundigkorhpe, the
are ferminated by o +END card end should not be

updates

separated by 1EOD cards. There must be o one~to-one
correspondence of update packets fo compressed programs.
End-of-job is signaled by end-of-file conventions applied
o the Cl device.

ASSEMBLE SOURCE PROGRAM, COMPRESSED
OUTPUT ON DISK FILE, LISTING OUTPUT

_éurce Deck = \

f1aP s, L0, CO N\
1ASSIGN (M:CO,D1,COMPRESS) \

J :(RSIZE,30)]
| :(FORMAT,B), (FSIZE, 300), ; \
| :ALLOT (FILE,D1,COMPRESS), ;
{RADEDIT
1JOB

In this example, the CO device is assigned to a disk file
called COMPRESS in a background data arec of the disk.
The compressed output is written on the COMPRESS file.

ASSEMBLE COMPRESSED DECKX FROM DISK FILE, SOURCE
UPDATES FROM CARDS, LISTING QUTPUT

| +END
Fdecfe Deck (+Cards and Source)
[1apst,CLLO

| 1ASSIGN (M:C1,D1,COMPRESS)
1JOB

In this exomple, the CI (d input) device is os-
signed to the COMPRESS file in o bockground data orea of
the disk. The source update deck will be read from the SI
device. In effect, this will update the anembly given in the
previous example.

AP Exomples 185

ASSEMBLE SOURCE PROGRAM. WRITE COMPRESSED
OUTPUT ON S-TRACK TAPE, LISTING SUTPUT

[Source Deck
| 1aPs1,cO,LO
[1Rew 91A83
| tASSIGN (M:CO,9TA83)
1JOB

In this exomple, the COdevice is assigned to the designated
9-track magnetic tape unit to receive the compressed output.

186 AP Exomples

ASSEMBLE COMPRESSED PROGRAM FROM
S-TRACK TAPE, LISTING OUTPUT

J1arci 0
| 1REw 97A83
] 1ASSIGN (M:C1,9TA83)
1JOB

In this example, the Cl device is assigned to the desig-
noted magnetic tape to read the compressed input to be
ossembled. This is the next logical job step to follow
the previous example.

| - FORTRAN JOB EXAMPLES
COMBINED FORTRAN COMPIAYIONS, PLUS FORTRAN COMPILE AND EXECUTE

TiEIN
1EOD

~ firov

1oL0AD (MaP, ALL), GO
IEOD

4.] FORTRAN Source Deck
[irorTRAN LO, GO

1EOD \

FORTRAN Source Deck
IFORTRAN LS

— 1toD

2.| FORTRAN Source Deck

1EOD

1. [FORTRAN Source Deck
[iForTRaANTLO AN

1JOB \

In this exomple, the first two source decks ore compiled with mixed (source ond object language) listed output. The next
source program (3) is compiled with a source listing (only) being output. The final source deck (4) will compile with the ob-
ject module being output on both the BO ond GO files. The Loader inputs the object module from the GO file to form the
Root and outputs the executable progrom to the OV file. The program (called OV) is executed via the IROV commond.

.

-

FORTRAN Job Examples 187

Data Deck

Jirov

OLOAD GO, (MAP, ALL)

|
JFORTRAN Source Deck
{1FORTRAN $1,LS,BO, GO, RT
|1assiGN (M:BO, BP, BOFORT)
__|:(FORMAT,B), (RSIZE, 30), (FSIZE,50) "\
|.ALLOT (FILE, 8P, BOFORT),;
| raDeDIT

1108 \

In this example, RADEDIT cllots a file called BOFORT in binary format fo the Background Program area of the disk.
The specified record size is 30 words; the file size is 50 records. The JASSIGN command assigns the M:BO DCB (binary
output) to file BOFORT. The IFORTRAN command specifies that symbolic input is to be read from the SI device, the source
input is to be l